【JAVA八股文】算法、数据结构、基础设计模式

news2024/11/18 20:48:17

算法、数据结构、基础设计模式

    • 1. 二分查找
    • 2. 冒泡排序
    • 3. 选择排序
    • 4. 插入排序
    • 5. 希尔排序
    • 6. 快速排序
    • 7. ArrayList
    • 8. Iterator
    • 9. LinkedList
    • 10. HashMap
      • 1)基本数据结构
      • 2)树化与退化
      • 3)索引计算
      • 4)put 与扩容
      • 5)并发问题
      • 6)key 的设计
    • 11. 单例模式

1. 二分查找

算法描述

  1. 前提:有已排序数组 A(假设已经做好)

  2. 定义左边界 L、右边界 R,确定搜索范围,循环执行二分查找(3、4两步)

  3. 获取中间索引 M = Floor((L+R) /2)

  4. 中间索引的值 A[M] 与待搜索的值 T 进行比较

    ① A[M] == T 表示找到,返回中间索引

    ② A[M] > T,中间值右侧的其它元素都大于 T,无需比较,中间索引左边去找,M - 1 设置为右边界,重新查找

    ③ A[M] < T,中间值左侧的其它元素都小于 T,无需比较,中间索引右边去找, M + 1 设置为左边界,重新查找

  5. 当 L > R 时,表示没有找到,应结束循环

算法实现

public static int binarySearch(int[] a, int t) {
    int l = 0, r = a.length - 1, m;
    while (l <= r) {
        m = (l + r) / 2;
        if (a[m] == t) {
            return m;
        } else if (a[m] > t) {
            r = m - 1;
        } else {
            l = m + 1;
        }
    }
    return -1;
}

测试代码

public static void main(String[] args) {
    int[] array = {1, 5, 8, 11, 19, 22, 31, 35, 40, 45, 48, 49, 50};
    int target = 47;
    int idx = binarySearch(array, target);
    System.out.println(idx);
}

解决整数溢出问题

当 l 和 r 都较大时,l + r 有可能超过整数范围,造成运算错误,解决方法有两种:

int m = l + (r - l) / 2;

还有一种是:

int m = (l + r) >>> 1;

其它考法

  1. 有一个有序表为 1,5,8,11,19,22,31,35,40,45,48,49,50 当二分查找值为 48 的结点时,查找成功需要比较的次数

  2. 使用二分法在序列 1,4,6,7,15,33,39,50,64,78,75,81,89,96 中查找元素 81 时,需要经过( )次比较

  3. 在拥有128个元素的数组中二分查找一个数,需要比较的次数最多不超过多少次

对于前两个题目,记得一个简要判断口诀:奇数二分取中间,偶数二分取中间靠左。对于后一道题目,需要知道公式:

n = l o g 2 N = l o g 10 N / l o g 10 2 n = log_2N = log_{10}N/log_{10}2 n=log2N=log10N/log102

其中 n 为查找次数,N 为元素个数

2. 冒泡排序

算法描述

  1. 依次比较数组中相邻两个元素大小,若 a[j] > a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后
  2. 重复以上步骤,直到整个数组有序

算法实现

public static void bubble(int[] a) {
    for (int j = 0; j < a.length - 1; j++) {
        // 一轮冒泡
        boolean swapped = false; // 是否发生了交换
        for (int i = 0; i < a.length - 1 - j; i++) {
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
                Utils.swap(a, i, i + 1);
                swapped = true;
            }
        }
        System.out.println("第" + j + "轮冒泡"
                           + Arrays.toString(a));
        if (!swapped) {
            break;
        }
    }
}
  • 优化点1:每经过一轮冒泡,内层循环就可以减少一次
  • 优化点2:如果某一轮冒泡没有发生交换,则表示所有数据有序,可以结束外层循环

进一步优化

public static void bubble_v2(int[] a) {
    int n = a.length - 1;
    while (true) {
        int last = 0; // 表示最后一次交换索引位置
        for (int i = 0; i < n; i++) {
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
                Utils.swap(a, i, i + 1);
                last = i;
            }
        }
        n = last;
        System.out.println("第轮冒泡"
                           + Arrays.toString(a));
        if (n == 0) {
            break;
        }
    }
}
  • 每轮冒泡时,最后一次交换索引可以作为下一轮冒泡的比较次数,如果这个值为零,表示整个数组有序,直接退出外层循环即可

3. 选择排序

算法描述

  1. 将数组分为两个子集,排序的和未排序的,每一轮从未排序的子集中选出最小的元素,放入排序子集

  2. 重复以上步骤,直到整个数组有序

算法实现

public static void selection(int[] a) {
    for (int i = 0; i < a.length - 1; i++) {
        // i 代表每轮选择最小元素要交换到的目标索引
        int s = i; // 代表最小元素的索引
        for (int j = s + 1; j < a.length; j++) {
            if (a[s] > a[j]) { // j 元素比 s 元素还要小, 更新 s
                s = j;
            }
        }
        if (s != i) {
            swap(a, s, i);
        }
        System.out.println(Arrays.toString(a));
    }
}
  • 优化点:为减少交换次数,每一轮可以先找最小的索引,在每轮最后再交换元素

与冒泡排序比较

  1. 二者平均时间复杂度都是 O ( n 2 ) O(n^2) O(n2)

  2. 选择排序一般要快于冒泡,因为其交换次数少

  3. 但如果集合有序度高,冒泡优于选择

  4. 冒泡属于稳定排序算法,而选择属于不稳定排序

    • 稳定排序指,按对象中不同字段进行多次排序,不会打乱同值元素的顺序
    • 不稳定排序则反之

稳定排序与不稳定排序

System.out.println("=================不稳定================");
Card[] cards = getStaticCards();
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

System.out.println("=================稳定=================");
cards = getStaticCards();
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

都是先按照花色排序(♠♥♣♦),再按照数字排序(AKQJ…)

  • 不稳定排序算法按数字排序时,会打乱原本同值的花色顺序

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♥2], [♠2]]
    

    原来 ♠2 在前 ♥2 在后,按数字再排后,他俩的位置变了

  • 稳定排序算法按数字排序时,会保留原本同值的花色顺序,如下所示 ♠2 与 ♥2 的相对位置不变

    [[♠7], [♠2], [♠4], [♠5], [♥2], [♥5]]
    [[♠7], [♠5], [♥5], [♠4], [♠2], [♥2]]
    

4. 插入排序

算法描述

  1. 将数组分为两个区域,排序区域和未排序区域,每一轮从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)

  2. 重复以上步骤,直到整个数组有序

算法实现

// 修改了代码与希尔排序一致
public static void insert(int[] a) {
    // i 代表待插入元素的索引
    for (int i = 1; i < a.length; i++) {
        int t = a[i]; // 代表待插入的元素值
        int j = i;
        System.out.println(j);
        while (j >= 1) {
            if (t < a[j - 1]) { // j-1 是上一个元素索引,如果 > t,后移
                a[j] = a[j - 1];
                j--;
            } else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
                break;
            }
        }
        a[j] = t;
        System.out.println(Arrays.toString(a) + " " + j);
    }
}

与选择排序比较

  1. 二者平均时间复杂度都是 O ( n 2 ) O(n^2) O(n2)

  2. 大部分情况下,插入都略优于选择

  3. 有序集合插入的时间复杂度为 O ( n ) O(n) O(n)

  4. 插入属于稳定排序算法,而选择属于不稳定排序

提示

插入排序通常被轻视,其实它的地位非常重要。小数据量排序,都会优先选择插入排序

5. 希尔排序

算法描述

  1. 首先选取一个间隙序列,如 (n/2,n/4 … 1),n 为数组长度

  2. 每一轮将间隙相等的元素视为一组,对组内元素进行插入排序,目的有二

    ① 少量元素插入排序速度很快

    ② 让组内值较大的元素更快地移动到后方

  3. 当间隙逐渐减少,直至为 1 时,即可完成排序

算法实现

private static void shell(int[] a) {
    int n = a.length;
    for (int gap = n / 2; gap > 0; gap /= 2) {
        // i 代表待插入元素的索引
        for (int i = gap; i < n; i++) {
            int t = a[i]; // 代表待插入的元素值
            int j = i;
            while (j >= gap) {
                // 每次与上一个间隙为 gap 的元素进行插入排序
                if (t < a[j - gap]) { // j-gap 是上一个元素索引,如果 > t,后移
                    a[j] = a[j - gap];
                    j -= gap;
                } else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
                    break;
                }
            }
            a[j] = t;
            System.out.println(Arrays.toString(a) + " gap:" + gap);
        }
    }
}

6. 快速排序

算法描述

  1. 每一轮排序选择一个基准点(pivot)进行分区
    1. 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区
    2. 当分区完成时,基准点元素的位置就是其最终位置
  2. 在子分区内重复以上过程,直至子分区元素个数少于等于 1,这体现的是分而治之的思想 (divide-and-conquer)
  3. 从以上描述可以看出,一个关键在于分区算法,常见的有洛穆托分区方案、双边循环分区方案、霍尔分区方案

单边循环快排(lomuto 洛穆托分区方案)

  1. 选择最右元素作为基准点元素

  2. j 指针负责找到比基准点小的元素,一旦找到则与 i 进行交换

  3. i 指针维护小于基准点元素的边界,也是每次交换的目标索引

  4. 最后基准点与 i 交换,i 即为分区位置

public static void quick(int[] a, int l, int h) {
    if (l >= h) {
        return;
    }
    int p = partition(a, l, h); // p 索引值
    quick(a, l, p - 1); // 左边分区的范围确定
    quick(a, p + 1, h); // 左边分区的范围确定
}

private static int partition(int[] a, int l, int h) {
    int pv = a[h]; // 基准点元素
    int i = l;
    for (int j = l; j < h; j++) {
        if (a[j] < pv) {
            if (i != j) {
                swap(a, i, j);
            }
            i++;
        }
    }
    if (i != h) {
        swap(a, h, i);
    }
    System.out.println(Arrays.toString(a) + " i=" + i);
    // 返回值代表了基准点元素所在的正确索引,用它确定下一轮分区的边界
    return i;
}

双边循环快排(不完全等价于 hoare 霍尔分区方案)

  1. 选择最左元素作为基准点元素
  2. j 指针负责从右向左找比基准点小的元素,i 指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至 i,j 相交
  3. 最后基准点与 i(此时 i 与 j 相等)交换,i 即为分区位置

要点

  1. 基准点在左边,并且要先 j 后 i

  2. while( i < j && a[j] > pv ) j–

  3. while ( i < j && a[i] <= pv ) i++

private static void quick(int[] a, int l, int h) {
    if (l >= h) {
        return;
    }
    int p = partition(a, l, h);
    quick(a, l, p - 1);
    quick(a, p + 1, h);
}

private static int partition(int[] a, int l, int h) {
    int pv = a[l];
    int i = l;
    int j = h;
    while (i < j) {
        // j 从右找小的
        while (i < j && a[j] > pv) {
            j--;
        }
        // i 从左找大的
        while (i < j && a[i] <= pv) {
            i++;
        }
        swap(a, i, j);
    }
    swap(a, l, j);
    System.out.println(Arrays.toString(a) + " j=" + j);
    return j;
}

快排特点

  1. 平均时间复杂度是 O ( n l o g 2 ⁡ n ) O(nlog_2⁡n ) O(nlog2n),最坏时间复杂度 O ( n 2 ) O(n^2) O(n2)

  2. 数据量较大时,优势非常明显

  3. 属于不稳定排序

洛穆托分区方案 vs 霍尔分区方案

  • 霍尔的移动次数平均来讲比洛穆托少3倍

7. ArrayList

扩容规则

  1. ArrayList() 会使用长度为零的数组

  2. ArrayList(int initialCapacity) 会使用指定容量的数组

  3. public ArrayList(Collection<? extends E> c) 会使用 c 的大小作为数组容量

  4. add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍

  5. addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)

其中第 4 点必须知道,其它几点视个人情况而定

8. Iterator

Fail-Fast 与 Fail-Safe

  • ArrayList 是 fail-fast 的典型代表,遍历的同时不能修改,尽快失败

  • CopyOnWriteArrayList 是 fail-safe 的典型代表,遍历的同时可以修改,原理是读写分离

9. LinkedList

LinkedList

  1. 基于双向链表,无需连续内存
  2. 随机访问慢(要沿着链表遍历)
  3. 头尾插入删除性能高
  4. 占用内存多

ArrayList

  1. 基于数组,需要连续内存
  2. 随机访问快(指根据下标访问)
  3. 尾部插入、删除性能可以,其它部分插入、删除都会移动数据,因此性能会低
  4. 可以利用 cpu 缓存,局部性原理

10. HashMap

1)基本数据结构

  • 1.7 数组 + 链表
  • 1.8 数组 + (链表 | 红黑树)

2)树化与退化

树化意义

  • 红黑树用来避免 DoS 攻击,防止链表超长时性能下降,树化应当是偶然情况,是保底策略
  • hash 表的查找,更新的时间复杂度是 O ( 1 ) O(1) O(1),而红黑树的查找,更新的时间复杂度是 O ( l o g 2 ⁡ n ) O(log_2⁡n ) O(log2n),TreeNode 占用空间也比普通 Node 的大,如非必要,尽量还是使用链表
  • hash 值如果足够随机,则在 hash 表内按泊松分布,在负载因子 0.75 的情况下,长度超过 8 的链表出现概率是 0.00000006,树化阈值选择 8 就是为了让树化几率足够小

树化规则

  • 当链表长度超过树化阈值 8 时,先尝试扩容来减少链表长度,如果数组容量已经 >=64,才会进行树化

退化规则

  • 情况1:在扩容时如果拆分树时,树元素个数 <= 6 则会退化链表
  • 情况2:remove 树节点时,若 root、root.left、root.right、root.left.left 有一个为 null ,也会退化为链表

3)索引计算

索引计算方法

  • 首先,计算对象的 hashCode()
  • 再进行调用 HashMap 的 hash() 方法进行二次哈希
    • 二次 hash() 是为了综合高位数据,让哈希分布更为均匀
  • 最后 & (capacity – 1) 得到索引

数组容量为何是 2 的 n 次幂

  1. 计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模
  2. 扩容时重新计算索引效率更高: hash & oldCap == 0 的元素留在原来位置 ,否则新位置 = 旧位置 + oldCap

注意

  • 二次 hash 是为了配合 容量是 2 的 n 次幂 这一设计前提,如果 hash 表的容量不是 2 的 n 次幂,则不必二次 hash
  • 容量是 2 的 n 次幂 这一设计计算索引效率更好,但 hash 的分散性就不好,需要二次 hash 来作为补偿,没有采用这一设计的典型例子是 Hashtable

4)put 与扩容

put 流程

  1. HashMap 是懒惰创建数组的,首次使用才创建数组
  2. 计算索引(桶下标)
  3. 如果桶下标还没人占用,创建 Node 占位返回
  4. 如果桶下标已经有人占用
    1. 已经是 TreeNode 走红黑树的添加或更新逻辑
    2. 是普通 Node,走链表的添加或更新逻辑,如果链表长度超过树化阈值,走树化逻辑
  5. 返回前检查容量是否超过阈值,一旦超过进行扩容

1.7 与 1.8 的区别

  1. 链表插入节点时,1.7 是头插法,1.8 是尾插法

  2. 1.7 是大于等于阈值且没有空位时才扩容,而 1.8 是大于阈值就扩容

  3. 1.8 在扩容计算 Node 索引时,会优化

扩容(加载)因子为何默认是 0.75f

  1. 在空间占用与查询时间之间取得较好的权衡
  2. 大于这个值,空间节省了,但链表就会比较长影响性能
  3. 小于这个值,冲突减少了,但扩容就会更频繁,空间占用也更多

5)并发问题

扩容死链(1.7 会存在)

1.7 源码如下:

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}
  • e 和 next 都是局部变量,用来指向当前节点和下一个节点
  • 线程1(绿色)的临时变量 e 和 next 刚引用了这俩节点,还未来得及移动节点,发生了线程切换,由线程2(蓝色)完成扩容和迁移

在这里插入图片描述

  • 线程2 扩容完成,由于头插法,链表顺序颠倒。但线程1 的临时变量 e 和 next 还引用了这俩节点,还要再来一遍迁移

在这里插入图片描述

  • 第一次循环
    • 循环接着线程切换前运行,注意此时 e 指向的是节点 a,next 指向的是节点 b
    • e 头插 a 节点,注意图中画了两份 a 节点,但事实上只有一个(为了不让箭头特别乱画了两份)
    • 当循环结束是 e 会指向 next 也就是 b 节点

在这里插入图片描述

  • 第二次循环
    • next 指向了节点 a
    • e 头插节点 b
    • 当循环结束时,e 指向 next 也就是节点 a

在这里插入图片描述

  • 第三次循环
    • next 指向了 null
    • e 头插节点 a,a 的 next 指向了 b(之前 a.next 一直是 null),b 的 next 指向 a,死链已成
    • 当循环结束时,e 指向 next 也就是 null,因此第四次循环时会正常退出

在这里插入图片描述

数据错乱(1.7,1.8 都会存在)

6)key 的设计

key 的设计要求

  1. HashMap 的 key 可以为 null,但 Map 的其他实现则不然
  2. 作为 key 的对象,必须实现 hashCode 和 equals,并且 key 的内容不能修改(不可变)
  3. key 的 hashCode 应该有良好的散列性

如果 key 可变,例如修改了 age 会导致再次查询时查询不到

public class HashMapMutableKey {
    public static void main(String[] args) {
        HashMap<Student, Object> map = new HashMap<>();
        Student stu = new Student("张三", 18);
        map.put(stu, new Object());

        System.out.println(map.get(stu));

        stu.age = 19;
        System.out.println(map.get(stu));
    }

    static class Student {
        String name;
        int age;

        public Student(String name, int age) {
            this.name = name;
            this.age = age;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }

        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (o == null || getClass() != o.getClass()) return false;
            Student student = (Student) o;
            return age == student.age && Objects.equals(name, student.name);
        }

        @Override
        public int hashCode() {
            return Objects.hash(name, age);
        }
    }
}

String 对象的 hashCode() 设计

  • 目标是达到较为均匀的散列效果,每个字符串的 hashCode 足够独特
  • 字符串中的每个字符都可以表现为一个数字,称为 S i S_i Si,其中 i 的范围是 0 ~ n - 1
  • 散列公式为: S 0 ∗ 3 1 ( n − 1 ) + S 1 ∗ 3 1 ( n − 2 ) + … S i ∗ 3 1 ( n − 1 − i ) + … S ( n − 1 ) ∗ 3 1 0 S_0∗31^{(n-1)}+ S_1∗31^{(n-2)}+ … S_i ∗ 31^{(n-1-i)}+ …S_{(n-1)}∗31^0 S031(n1)+S131(n2)+Si31(n1i)+S(n1)310
  • 31 代入公式有较好的散列特性,并且 31 * h 可以被优化为
    • 即 $32 ∗h -h $
    • 2 5 ∗ h − h 2^5 ∗h -h 25hh
    • h ≪ 5 − h h≪5 -h h5h

11. 单例模式

饿汉式

public class Singleton1 implements Serializable {
    private Singleton1() {
        if (INSTANCE != null) {
            throw new RuntimeException("单例对象不能重复创建");
        }
        System.out.println("private Singleton1()");
    }

    private static final Singleton1 INSTANCE = new Singleton1();

    public static Singleton1 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

    public Object readResolve() {
        return INSTANCE;
    }
}
  • 构造方法抛出异常是防止反射破坏单例
  • readResolve() 是防止反序列化破坏单例

枚举饿汉式

public enum Singleton2 {
    INSTANCE;

    private Singleton2() {
        System.out.println("private Singleton2()");
    }

    @Override
    public String toString() {
        return getClass().getName() + "@" + Integer.toHexString(hashCode());
    }

    public static Singleton2 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}
  • 枚举饿汉式能天然防止反射、反序列化破坏单例

懒汉式

public class Singleton3 implements Serializable {
    private Singleton3() {
        System.out.println("private Singleton3()");
    }

    private static Singleton3 INSTANCE = null;

    // Singleton3.class
    public static synchronized Singleton3 getInstance() {
        if (INSTANCE == null) {
            INSTANCE = new Singleton3();
        }
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

}
  • 其实只有首次创建单例对象时才需要同步,但该代码实际上每次调用都会同步
  • 因此有了下面的双检锁改进

双检锁懒汉式

public class Singleton4 implements Serializable {
    private Singleton4() {
        System.out.println("private Singleton4()");
    }

    private static volatile Singleton4 INSTANCE = null; // 可见性,有序性

    public static Singleton4 getInstance() {
        if (INSTANCE == null) {
            synchronized (Singleton4.class) {
                if (INSTANCE == null) {
                    INSTANCE = new Singleton4();
                }
            }
        }
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}

为何必须加 volatile:

  • INSTANCE = new Singleton4() 不是原子的,分成 3 步:创建对象、调用构造、给静态变量赋值,其中后两步可能被指令重排序优化,变成先赋值、再调用构造
  • 如果线程1 先执行了赋值,线程2 执行到第一个 INSTANCE == null 时发现 INSTANCE 已经不为 null,此时就会返回一个未完全构造的对象

内部类懒汉式

public class Singleton5 implements Serializable {
    private Singleton5() {
        System.out.println("private Singleton5()");
    }

    private static class Holder {
        static Singleton5 INSTANCE = new Singleton5();
    }

    public static Singleton5 getInstance() {
        return Holder.INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}
  • 避免了双检锁的缺点

JDK 中单例的体现

  • Runtime 体现了饿汉式单例
  • Console 体现了双检锁懒汉式单例
  • Collections 中的 EmptyNavigableSet 内部类懒汉式单例
  • ReverseComparator.REVERSE_ORDER 内部类懒汉式单例
  • Comparators.NaturalOrderComparator.INSTANCE 枚举饿汉式单例

如有不足,请多指教,
未完待续,持续更新!
大家一起进步!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/348516.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从lettcue插件看skywalking

lettcue 的写操作是异步的。io.lettuce.core.RedisChannelWriter.write进行写入&#xff0c;io.lettuce.core.protocol.RedisCommand进行异步读取数据 skywalking 插件大体逻辑 在方法执行前&#xff0c;通过ContextManager创建span创建span的同时&#xff0c;判断trace上下文…

零信任-Akamai零信任介绍(6)

​Akamai零信任介绍 Akamai是一家专注于分布式网络服务的公司&#xff0c;它提供了一系列的互联网内容和应用加速服务。关于Akamai的零信任&#xff0c;它指的是Akamai的安全架构中不存在任何一个环节是可以被单独的控制或影响的&#xff0c;因此可以提供更高的安全性。通过使…

ChatGPT is not all you need,一文看尽SOTA生成式AI模型:6大公司9大类别21个模型全回顾(三)

文章目录ChatGPT is not all you need&#xff0c;一文看尽SOTA生成式AI模型&#xff1a;6大公司9大类别21个模型全回顾&#xff08;三&#xff09;Text-to-Text 模型ChatGPTLaMDAPEERMeta AI Speech from BrainText-to-Code 模型CodexAlphacodeText-to-Science 模型GalacticaM…

超简单!pytorch入门教程:Tensor

超简单&#xff01;pytorch入门教程&#xff1a;Tensor 一、pytorch安装 安装pytorch之前&#xff0c;需要安装好python&#xff08;废话&#xff09;&#xff0c;还没安装过python的宝宝请先移步到廖雪峰的python教程&#xff0c;待安装熟悉完之后&#xff0c;再过来这边。 …

C代码中访问链接脚本中的符号

一、目的在之前的《GNU LD脚本命令语言&#xff08;一&#xff09;》、《GNU LD脚本命令语言&#xff08;二&#xff09;》我们介绍了GNU链接脚本的知识点&#xff0c;基本上对链接脚本中的SECTION、REGION、以及加载地址与执行地址的关系等内容有了一定的了解。本篇主要讲解链…

工业4.0是如何优化垃圾处理行业的

如今&#xff0c;工业4.0正在影响着制造业和物流等行业&#xff0c;其发展潜力在未来还有望进一步扩大。一些全球领先的垃圾处理公司已经开始在水处理和废物回收等领域应用工业4.0。工业4.0的创新给这个领域带来了一些必要的改进。随着环境危机的加剧&#xff0c;垃圾处理行业面…

2022年最新数据库调查报告:超八成DBA月薪过万,你拖后腿了吗?

数据库管理员属于IT行业高薪职业的一种&#xff0c;近几年关于数据库管理员的薪资统计文章也层出不穷&#xff0c;那么当前&#xff0c;DBA们的薪资究竟到达了怎样的水平呢&#xff1f;墨天轮数据社区发布最新《2022年墨天轮数据库大调查报告》&#xff0c;数据显示超八成DBA月…

《MySQL学习》 全局锁和表锁

一.MySQL锁的分类 二.全局锁 全局锁对整个数据库加锁&#xff0c;可以执行如下命令&#xff0c;整个数据库都将处于只读状态。 Flush tables with read lock ;我们可以执行 unlock table进行解锁 unlock table ;读操作 非读操作&#xff08;阻塞&#xff09; 全局锁的典型使…

【并发编程】【2】进程与线程

并发编程 2.进程与线程 2.1 进程与线程 进程 程序由指令和数据组成&#xff0c;但这些指令要运行&#xff0c;数据要读写&#xff0c;就必须将指令加载至 CPU&#xff0c;数据加载至内存。在 指令运行过程中还需要用到磁盘、网络等设备。进程就是用来加载指令、管理内存、管…

开源大数据分析工具有几大内容?

在数据越来越重要的今天&#xff0c;数据管理的重要性不言而喻。引用专业的开源大数据分析工具可以为企业实现数字化办公&#xff0c;提升效率&#xff0c;提高数据管理品质和效率。我们今天就一起来了解下开源大数据分析工具的详细内容吧。 一、实现数据分析的重要性 在以前&a…

Java面试——Spring 事务

目录 1.什么是Spring 事务 2.Spring 事务的开启方式 3.Spring事务的实现方式/原理 4.事务传播机制 5.事务隔离级别 6.事务失效的原因 1.什么是Spring 事务 事务在逻辑上是一组操作&#xff0c;要么执行&#xff0c;要不都不执行。 如下&#xff1a; Begin; insert into…

【java】Spring Boot --spring boot项目整合xxl-job

文章目录1、源码下载地址2.文档地址3.源码结构4.初始化数据库脚本5.配置调度中心xxl-job-admin5.1 修改调度中心配置文件&#xff1a;/xxl-job/xxl-job-admin/src/main/resources/application.properties5.2 启动调度中心5.3 访问调度中心管理界面6.创建执行器项目6.3 载入配置…

Framework——【MessageQueue】消息队列

定义 队列是 Apache RocketMQ 中消息存储和传输的实际容器&#xff0c;也是 Apache RocketMQ 消息的最小存储单元。 Apache RocketMQ 的所有主题都是由多个队列组成&#xff0c;以此实现队列数量的水平拆分和队列内部的流式存储。 队列的主要作用如下&#xff1a; 存储顺序性…

BUUCTF-练习场-WEB-第一部分(8道)

[极客大挑战 2019]EasySQL 1payload&#xff1a;1 or 11#是闭合前面的查询语句&#xff0c;or 11恒成立&#xff0c;可以使用or句子绕过判断&#xff0c;#用于注释&#xff0c;注释后面的内容不再执行&#xff0c;所以该sql命令会返回表内所有内容&#xff0c;其实就是实现一个…

JavaSE学习day7_01 面向对象

1. 类和对象 1.1 类和对象的理解 客观存在的事物皆为对象 &#xff0c;所以我们也常常说万物皆对象。即各个对象的总称&#xff0c;比如学生是一个类&#xff0c;但是学生有很多个&#xff0c;每一个称之为对象。 类 类的理解 类是对现实生活中一类具有共同属性和行为的事物的…

Apifox-接口调用、自动化测试工具

Apifox简介 Apifox 的定位是Postman Swagger Mock JMeter&#xff0c;具有API文档管理、API调试、API Mock、API 自动化测试等功能。可以通过一种工具解决之前使用多种工具的数据同步问题。高效、及时、准确&#xff01; 安装 Apifox的安装非常方便&#xff0c;直接下载安…

ASEMI中低压MOS管ASE60N10参数,ASE60N10规格

编辑-Z ASEMI中低压MOS管ASE60N10参数&#xff1a; 型号&#xff1a;ASE60N10 漏极-源极电压&#xff08;VDS&#xff09;&#xff1a;100V 栅源电压&#xff08;VGS&#xff09;&#xff1a;20V 漏极电流&#xff08;ID&#xff09;&#xff1a;60A 功耗&#xff08;PD&…

从矩阵中提取对角线元素;将一维数组转换为对角线矩阵:np.diag()函数

【小白从小学Python、C、Java】【计算机等级考试500强双证书】【Python-数据分析】从矩阵中提取对角线元素将一维数组转换为对角线矩阵np.diag()函数选择题下列说法错误的是?import numpy as npmyarray1 np.array([1,2,3])print("【显示】myarray1")print(myarray1…

Django框架之模型shell工具和查看MySQL数据库日志

shell工具和查看MySQL数据库日志 1 shell工具 Django的manage工具提供了shell命令&#xff0c;帮助我们配置好当前工程的运行环境&#xff08;如连接好数据库等&#xff09;&#xff0c;以便可以直接在终端中执行测试python语句。 通过如下命令进入shell python manage.py …

菜鸟在 windows 下 python 中安装 jupyter 踩坑要点 、被神化的 VsCode

我平时用不到 python &#xff0c;更没用过 jupyter &#xff0c;因此我的 python知识仅限于知道有 python 这么个编程语言&#xff0c;会写个 print("Hello World!!!") 而已&#xff0c;完全没听过 jupyter &#xff0c;因为某些原因今天需要安装下 jupyter 看看&am…