JVM02类加载子系统

news2024/11/23 18:38:44

在这里插入图片描述
在这里插入图片描述

1. 加载阶段

通过一个类的全限定名获取定义此类的二进制字节流

将这个字节流所代表的静态存储结构转化为方法区的运行时数据结构

在内存中生成一个代表这个类的java.lang.Class对象,作为方法区这个类的各种数据的访问入口

加载class文件的方式
从本地系统中直接加载
通过网络获取,典型场景:Web Applet
从zip压缩包中读取,成为日后jar、war格式的基础
运行时计算生成,使用最多的是:动态代理技术
由其他文件生成,典型场景:JSP应用从专有数据库中提取.class文件,比较少见
从加密文件中获取,典型的防Class文件被反编译的保护措施

2. 链接阶段

2.1 验证 Verify

目的在于确保Class文件的字节流中包含信息符合当前虚拟机要求,保证被加载类的正确性,不会危害虚拟机自身安全。

主要包括四种验证,文件格式验证,元数据验证,字节码验证,符号引用验证

2.2 准备 Prepare

为类变量分配内存并且设置该类变量的默认初始值,即零值。
上面的变量a在准备阶段会赋初始值,但不是1,而是0。

这里不包含用final修饰的static,因为final在编译的时候就会分配了,准备阶段会显式初始化;

这里不会为实例变量分配初始化,类变量会分配在方法区中,而实例变量是会随着对象一起分配到Java堆中。

2.3解析 Resolve

将常量池内的符号引用转换为直接引用的过程。

事实上,解析操作往往会伴随着JVM在执行完初始化之后再执行。

符号引用就是一组符号来描述所引用的目标。符号引用的字面量形式明确定义在《java虚拟机规范》的class文件格式中。直接引用就是直接指向目标的指针、相对偏移量或一个间接定位到目标的句柄。

解析动作主要针对类或接口、字段、类方法、接口方法、方法类型等。对应常量池中的CONSTANT Class info、CONSTANT Fieldref info、CONSTANT Methodref info等

3. 初始化阶段

初始化阶段就是执行类构造器法()的过程。

此方法不需定义,是javac编译器自动收集类中的所有类变量的赋值动作和静态代码块中的语句合并而来。

也就是说,当我们代码中包含static变量的时候,就会有clinit方法
构造器方法中指令按语句在源文件中出现的顺序执行。

()不同于类的构造器。(关联:构造器是虚拟机视角下的())若该类具有父类,JVM会保证子类的()执行前,父类的()已经执行完毕。

任何一个类在声明后,都有生成一个构造器,默认是空参构造器

类加载器

在这里插入图片描述

引导类加载器无法直接通过代码获取,同时目前用户代码所使用的加载器为系统类加载器。同时我们通过获取String类型的加载器,发现是null,那么说明String类型是通过引导类加载器进行加载的,也就是说Java的核心类库都是使用根加载器进行加载的

1.1启动类加载器(引导类加载器,Bootstrap ClassLoader)

这个类加载使用C/C++语言实现的,嵌套在JVM内部。
它用来加载Java的核心库(JAVAHOME/jre/1ib/rt.jar、resources.jar或sun.boot.class.path路径下的内容),用于提供JVM自身需要的类
并不继承自ava.lang.ClassLoader,没有父加载器。
加载扩展类和应用程序类加载器,并指定为他们的父类加载器。
出于安全考虑,Bootstrap启动类加载器只加载包名为java、javax、sun等开头的类

1.2扩展类加载器(Extension ClassLoader)

Java语言编写,由sun.misc.Launcher$ExtClassLoader实现。
派生于ClassLoader类
父类加载器为启动类加载器
从java.ext.dirs系统属性所指定的目录中加载类库,或从JDK的安装目录的jre/1ib/ext子目录(扩展目录)下加载类库。如果用户创建的JAR放在此目录下,也会自动由扩展类加载器加载。

1.3应用程序类加载器(系统类加载器,AppClassLoader)

javI语言编写,由sun.misc.LaunchersAppClassLoader实现
派生于ClassLoader类
父类加载器为扩展类加载器
它负责加载环境变量classpath或系统属性java.class.path指定路径下的类库
该类加载是程序中默认的类加载器,一般来说,Java应用的类都是由它来完成加载
通过classLoader#getSystemclassLoader()方法可以获取到该类加载器

1.4 用户自定义类加载器

在Java的日常应用程序开发中,类的加载几乎是由上述3种类加载器相互配合执行的,在必要时,我们还可以自定义类加载器,来定制类的加载方式。 为什么要自定义类加载器?

隔离加载类
修改类加载的方式
扩展加载源
防止源码泄漏

双亲委派机制

Java虚拟机对class文件采用的是按需加载的方式,也就是说当需要使用该类时才会将它的class文件加载到内存生成class对象。而且加载某个类的class文件时,Java虚拟机采用的是双亲委派模式,即把请求交由父类处理,它是一种任务委派模式。

工作原理
如果一个类加载器收到了类加载请求,它并不会自己先去加载,而是把这个请求委托给父类的加载器去执行;
如果父类加载器还存在其父类加载器,则进一步向上委托,依次递归,请求最终将到达顶层的启动类加载器;
如果父类加载器可以完成类加载任务,就成功返回,倘若父类加载器无法完成此加载任务,子加载器才会尝试自己去加载,这就是双亲委派模式。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344246.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

六、HTTP 首部字段

HTTP 首部字段 一、HTTP 报文首部 HTTP 请求报文由方法、URI、HTTP 版本、HTTP 首部字段等部分构成。 HTTP 响应报文由HTTP版本、状态码(数字和原因短语)、HTTP首部字段3部分构成。 HTTP 协议的请求和响应报文中必定包含 HTTP 首部。首部内容为客户端…

TensorRT如何工作

TensorRT如何工作 本章提供了有关 TensorRT 工作原理的更多详细信息。 文章目录TensorRT如何工作5.1. Object Lifetimes5.2. Error Handling and Logging5.3 Memory5.3.1. The Build Phase5.3.2. The Runtime Phase5.4. Threading5.5. Determinism5.1. Object Lifetimes Tenso…

ChatGPT通俗导论:从RL之PPO算法、RLHF到GPT-N、instructGPT

前言 自从我那篇BERT通俗笔记一经发布,然后就不断改、不断找人寻求反馈、不断改,其中一位朋友倪老师(之前我司NLP高级班学员现课程助教老师之一)在谬赞BERT笔记无懈可击的同时,给我建议到,“后面估计可以尝试尝试在BERT的基础上…

MACD多周期共振指标公式,日周月共振

有人问多周期MACD怎么写,编写指标的难度其实不大,主要问题是解决多周期MACD显示的问题。日线、周线、月线三个周期,每个周期都有快线DIF和慢线DEA两条线,一共6条,怎么在副图上清晰显示出来。 一、MACD多周期共振指标公…

第三章SpringBoot配置文件

文章目录什么是配置文件比如我们的QQ的配置文件配置文件作用SpringBoot配置文件的格式Spring Boot 配置文件主要分为以下两种格式properties 配置文件说明properties 基本语法properties 缺点分析yml 配置文件yml概述yml基础语法读取配置文件Value 注解使用“${}”的格式读取Co…

深度使用国产Bg-Tinkle数据库客户端—太赞了,居然还集成chatGPT AI生成SQL

软件概述数据库客户端软件是一种用于连接、管理和操作数据库的软件。它通常与数据库管理系统(DBMS)配合使用,允许用户在其上执行SQL 语句、浏览数据库中的数据、执行备份和恢复操作以及执行其他管理任务。常见的数据库客户端软件包括 MySQL W…

攻防世界-Confusion1

题目 访问题目场景 某天,Bob说:PHP是最好的语言,但是Alice不赞同。所以Alice编写了这个网站证明。在她还没有写完的时候,我发现其存在问题。(请不要使用扫描器) 然后结合图片我们知道,这个网址是python写的&#xff0…

有序表(上)

文章目录1、引入2、左旋和右旋3、AVL树3.1 AVL 树的平衡条件3.2 搜索二叉树如何删除节点3.3 AVL树的平衡性被破坏的四种类型3.4 AVL 树平衡性如何检查?如何调整失衡?3.4.1 AVL树新增节点如何检查树的平衡性?3.4.2 AVL树删除节点如何检查树的平…

学习笔记:Java 并发编程⑥_并发工具_JUC

若文章内容或图片失效,请留言反馈。 部分素材来自网络,若不小心影响到您的利益,请联系博主删除。 视频链接:https://www.bilibili.com/video/av81461839配套资料:https://pan.baidu.com/s/1lSDty6-hzCWTXFYuqThRPw&am…

4. 寻找两个正序数组的中位数(数组)

文章目录题目描述方法一,重组排序方法二,调用系统函数题目描述 给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 算法的时间复杂度应该为 O(log (mn)) 。 示例 1: 输入&#…

最全面的SpringBoot教程(五)——整合框架

前言 本文为 最全面的SpringBoot教程(五)——整合框架 相关知识,下边将对SpringBoot整合Junit,SpringBoot整合Mybatis,SpringBoot整合Redis等进行详尽介绍~ 📌博主主页:小新要变强 的主页 &…

回归预测 | MATLAB实现NGO-LSTM北方苍鹰算法优化长短期记忆网络多输入单输出

回归预测 | MATLAB实现NGO-LSTM北方苍鹰算法优化长短期记忆网络多输入单输出 目录回归预测 | MATLAB实现NGO-LSTM北方苍鹰算法优化长短期记忆网络多输入单输出预测效果基本介绍程序设计参考资料预测效果 基本介绍 Matlab实现NGO-LSTM北方苍鹰算法优化长短期记忆网络多输入单输出…

聚观早报 |阿里清空印度支付宝Paytm股票;Meta终于成功收购Within

今日要闻:全球多所学校禁止学生使用ChatGPT;阿里清空印度支付宝Paytm股票;Meta终于成功收购Within;极氪完成 7.5 亿美元 A 轮融资;现代汽车在美电动汽车销量突破10万全球多所学校禁止学生使用ChatGPT 2月12日消息&…

关于北京君正:带ANC的2K网络摄像头用户案例

如果远程办公是您的未来,或者您经常通过视频通话与远方的朋友和亲戚交谈,那么您可以考虑购买网络摄像头以显著改善您的沟通。Anker PowerConf C200是个不错的选择。 Anker PowerConf C200专为个人工作空间而设计,能够以每秒30帧的速度拍摄2K…

Python图像卡通化animegan2-pytorch实例演示

先看下效果图: 左边是原图,右边是处理后的图片,使用的 face_paint_512_v2 模型。 项目获取: animegan2-pytorch 下载解压后 cmd 可进入项目地址的命令界面。 其中 img 是我自己建的,用于存放图片。 需要 torch 版本 …

【Selenium学习】Selenium 中常用的基本方法

1.send_keys 方法模拟键盘键入此方法类似于模拟键盘键入。以在百度首页搜索框输入“Selenium”为例,代码如下:# _*_ coding:utf-8 _*_ """ name:zhangxingzai date:2023/2/13 form:《Selenium 3Python 3自动化测试项目实战》 …

React Native(一)

移动端触摸事件example1:<ButtononPress{() > {Alert.alert(你点击了按钮&#xff01;);}}title"点我&#xff01;" />Touchable 系列组件TouchableHighlight 此组件的背景会在用户手指按下时变暗TouchableNativeFeedback 会在用户手指按下时形成类似墨水涟…

Java基础常见面试题(四)

反射 什么是反射&#xff1f; 反射是在运行状态中&#xff0c;对于任意一个类&#xff0c;都能够知道这个类的所有属性和方法&#xff1b;对于任意一个对象&#xff0c;都能够调用它的任意一个方法和属性&#xff1b;这种动态获取的信息以及动态调用对象的方法的功能称为 Jav…

大数据技术架构(组件)34——Spark:Spark SQL--Optimize

2.2.3、Optimize2.2.3.1、SQL3.3.1.1、RB1、Join选择在Hadoop中&#xff0c;MR使用DistributedCache来实现mapJoin。即将小文件存放到DistributedCache中&#xff0c;然后分发到各个Task上&#xff0c;并加载到内存中&#xff0c;类似于Map结构&#xff0c;然后借助于Mapper的迭…

【半监督医学图像分割 2021 CVPR】CVRL

文章目录【半监督医学图像分割 2021 CVPR】CVRL摘要1. 介绍1.1 总览1.2 无监督对比学习2. 实验3. 总结【半监督医学图像分割 2021 CVPR】CVRL 论文题目&#xff1a;Momentum Contrastive Voxel-wise Representation Learning for Semi-supervised Volumetric Medical Image Seg…