CountDownLatch的定义、使用 、原理

news2025/1/11 18:44:17

一、定义
CountDownLatch的作用很简单,就是一个或者一组线程在开始执行操作之前,必须要等到其他线程执行完才可以。我们举一个例子来说明,在考试的时候,老师必须要等到所有人交了试卷才可以走。此时老师就相当于等待线程,而学生就好比是执行的线程。

注意:java中还有一个同步工具类叫做CyclicBarrier,他的作用和CountDownLatch类似。同样是等待其他线程都完成了,才可以进行下一步操作,我们再举一个例子,在打王者的时候,在开局前所有人都必须要加载到100%才可以进入。否则所有玩家都相互等待。

我们看一下区别:

CountDownLatch: 一个线程(或者多个), 等待另外N个线程完成某个事情之后才能执行。 CyclicBarrier : N个线程相互等待,任何一个线程完成之前,所有的线程都必须等待。关键点其实就在于那N个线程(1)CountDownLatch里面N个线程就是学生,学生做完了试卷就可以走了,不用等待其他的学生是否完成(2)CyclicBarrier 里面N个线程就是所有的游戏玩家,一个游戏玩家加载到100%还不可以,必须要等到其他的游戏玩家都加载到100%才可以开局

现在应该理解CountDownLatch的含义了吧,下面我们使用一个代码案例来解释。

二、使用
我们使用学生考试的案例来进行演示:

我们定义了一个CountDownLatch,并设置其值为2。有两个学生使用两个线程来表示,然后依次执行。最后老师线程(main线程)在学生线程都执行完了才可以执行。我们来运行一边看看结果。

  
public  void mysqlTest() {
CountDownLatch  countDownLatch=new CountDownLatch(2);

    System.out.println("全班同学开始考试,一共2个同学!");
    new Thread(()->{
        System.out.println("第一个同学交卷!countDownLatch-1");
        countDownLatch.countDown();

    }).start();

    new Thread(()->{
        System.out.println("第二个同学交卷!countDownLatch-1");
        countDownLatch.countDown();

    }).start();
    
    try {
        countDownLatch.await();
    } catch (Exception e) {
        e.printStackTrace();
    }

    System.out.println("老师清点完试卷,只要有一个学生未交卷,只要countDownLatch不为0,所有考试不得离场!");

}

在上面,我们定义了一个CountDownLatch,并设置其值为2。有两个学生使用两个线程来表示,然后依次执行。最后老师线程(main线程)在学生线程都执行完了才可以执行。

在这里插入图片描述

在上面我们的等待线程时老师(main线程),CountDownLatch从2见减到0,主线程才执行。
下面我们对这个countDownLatch分析一下。为什么具有上面的特点。

三、原理
在上面我们看到,CountDownLatch主要使用countDown方法进行减1操作,使用await方法进行等到操作。我们进入到源码中看看。本源码基于jdk1.8。特在此说明。

1、countDown原理

/**
 * Decrements the count of the latch, releasing all waiting threads if
 * the count reaches zero.
 *
 * <p>If the current count is greater than zero then it is decremented.
 * If the new count is zero then all waiting threads are re-enabled for
 * thread scheduling purposes.
 *
 * <p>If the current count equals zero then nothing happens.
 */
public void countDown() {
    sync.releaseShared(1);
}

CountDownLatch里面保存了一个count值,通过减1操作,直到为0时候,等待线程才可以执行。而且通过源码也可以看到这个countDown方法其实是通过sync调用releaseShared(1)来完成的。

OK。到了这一步就疑问,sync是什么,releaseShared方法又是如何实现的。我们不妨接着看源码,在CountDownLatch的开头我们找到了答案,原来这个sync在这里定义了。

public class CountDownLatch {
    /**
     * Synchronization control For CountDownLatch.
     * Uses AQS state to represent count.
     */
    private static final class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 4982264981922014374L;

        Sync(int count) {
            setState(count);
        }

        int getCount() {
            return getState();
        }

        protected int tryAcquireShared(int acquires) {
            return (getState() == 0) ? 1 : -1;
        }

        protected boolean tryReleaseShared(int releases) {
            // Decrement count; signal when transition to zero
            for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        }
    }

在这里我们发现继承了AbstractQueuedSynchronizer(AQS)。AQS的其中一个作用就是维护线程状态和获取释放锁。在这里也就是说CountDownLatch使用AQS机制维护锁状态。而releaseShared(1)方法就是释放了一个共享锁。

现在理解了吧,底层使用AQS机制调用releaseShared方法释放一个锁资源。那么等待的方法是如何实现的呢?

2、await原理

 public void await() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
    }

 public boolean await(long timeout, TimeUnit unit)
        throws InterruptedException {
        return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
    }

这俩方法都是让线程等待,第一个没有实现限制,第二个有时间限制

(1)await()

await()底层主要是acquireSharedInterruptibly方法实现的,继续跟进去看看。

 public final void acquireSharedInterruptibly(int arg)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }

这里面有两个if语句,首先第一个判断是否被中断,如果被中断了,那就抛出中断异常。然后判断当前是否还有线程未执行,如果有那就,那就执行doAcquireSharedInterruptibly方法继续等待。

protected int tryAcquireShared(int arg) {
throw new UnsupportedOperationException();
}

上面函数的意思:

1、这是aqs里的方法 2、arg在这里调用的是1,标识countDown是否减少到了0 3、如果到了0,说明满足要求,返回1不在等待
4、如果未达到0,说明还有线程未执行,必须等待
5、执行结束才可以,返回-1,此时小于0执行doAcquireSharedInterruptibly方法

下面我们就来看看这个doAcquireSharedInterruptibly是如何实现的。

 private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return;
                    }
                }
                if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

大致意思:他会用一个一个的节点将线程串起来 等达到条件后再一个一个的唤醒。核心就是第三行的addWaiter函数。我们可以再跟进去看看吧。

private Node addWaiter(Node mode) {
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    if (pred != null) {
        node.prev = pred;
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

你会发现这里面也使用了CAS机制。而且就是使用链表穿起来的。

(2) await(long timeout, TimeUnit unit)

这个方法的意思是等待指定的时间,如果还有线程没执行完,那就接着执行。就好比考完试了,还有同学没交试卷,此时因为到时间了。不管三七二十一也不管剩下的同学是否提交,直接就走了。其底层是通过Sync的tryAcquireSharedNanos方法实现的,我们接着进入到源码中看看。

 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (Thread.interrupted())
            throw new InterruptedException();
        return tryAcquireShared(arg) >= 0 ||
            doAcquireSharedNanos(arg, nanosTimeout);
    }

在这里皮球又一次被踢走了,真正实现的其实就是doAcquireSharedNanos方法,tryAcquireShared方法主要是判断是否当前满足wait的条件。我们接着看。

 private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
            throws InterruptedException {
        if (nanosTimeout <= 0L)
            return false;
        final long deadline = System.nanoTime() + nanosTimeout;
        final Node node = addWaiter(Node.SHARED);
        boolean failed = true;
        try {
            for (;;) {
                final Node p = node.predecessor();
                if (p == head) {
                    int r = tryAcquireShared(arg);
                    if (r >= 0) {
                        setHeadAndPropagate(node, r);
                        p.next = null; // help GC
                        failed = false;
                        return true;
                    }
                }
                nanosTimeout = deadline - System.nanoTime();
                if (nanosTimeout <= 0L)
                    return false;
                if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                    LockSupport.parkNanos(this, nanosTimeout);
                if (Thread.interrupted())
                    throw new InterruptedException();
            }
        } finally {
            if (failed)
                cancelAcquire(node);
        }
    }

上面的代码看似长,最核心的就是for循环里面的,最主要的意思就是如果当前还有线程未执行而且过了超时时间,那就直接执行等待线程就好了,不再等了。也就是我在指定的时间内你没执行完我等着你,要是超了这个时间点我就不管了。

对于CountDownLatch来说原理主要还是通过源码来认识。不过CountDownLatch看起来虽然很好用,也有很多不足之处,比如说CountDownLatch是一次性的 , 计数器的值只能在构造方法中初始化一次 , 之后没有任何机制再次对其设置值,当CountDownLatch使用完毕后 , 它不能再次被使用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/343270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《Terraform 101 从入门到实践》 Terraform在公有云Azure上的应用

《Terraform 101 从入门到实践》这本小册在南瓜慢说官方网站和GitHub两个地方同步更新&#xff0c;书中的示例代码也是放在GitHub上&#xff0c;方便大家参考查看。 简介 Azure是微软的公有云&#xff0c;它提供了一些免费的资源&#xff0c;具体可以查看&#xff1a; https:/…

从零开始学数据分析之数据分析概述

当今世界对信息技术的依赖程度在不断加深&#xff0c;每天都会有大量的数据产生&#xff0c;我们经常会感到数据越来越多&#xff0c;但是要从中发现有价值的信息却越来越难。 这里所说的信息&#xff0c;可以理解为对数据集处理之后的结果&#xff0c;是从数据集中提炼出的可…

11- 聚类算法 (KMeans/DBSCAN/agg) (机器学习)

聚类算法 聚类算法和降维算法那都属于无监督算法。KMeans 是以一个值为中心, 然后所有其他点到该点距离最小值的累积和。 kmeans KMeans(n_clusters3) # n_clusters 分类数量 kmeans.fit(data.iloc[:,1:]) # 无监督&#xff0c;只需要给数据X就可以 DBSCAN 算法是…

GAMES101作业7及课程总结(重点实现多线程加速,微表面模型材质)

目录闲言碎语最终全部效果展示&#xff08;均为10241024512ssp&#xff09;课程总结与理解&#xff08;Path Tracing&#xff09;框架梳理任务一&#xff1a;迁移相关代码任务二&#xff1a;实现path tracing任务三&#xff1a;多线程加速&#xff08;包括其他加速的小trick&am…

Cocos Creator 3.x开发《切水果3D》

今天跟大家分享一个Cocos Creator 3D切水果的实战案例&#xff0c;帮助大家掌握Cocos Creator开发3D微信抖音小游戏&#xff0c;开发工具我们采用的是Cocos Creator 3.6。先上一波游戏操作效果图&#xff0c;接下来通过本文来讲解这个游戏的一些核心的技术点。 对啦&#xff0…

使用sqlmap + burpsuite sql工具注入拿flag

使用sqlmap burpsuite sql工具注入拿flag 记录一下自己重新开始学习web安全之路③。 目标网站&#xff1a;http://mashang.eicp.vip:1651/7WOY59OBj74nTwKzs3aftsh1MDELK2cG/ 首先判断网站是否存在SQL注入漏洞 1.找交互点 发现只有url这一个交互点&#xff0c;搜索框和登录…

Springboot扫描注解类

Springboot扫描注解类的入口在AbstractApplicationContext的refresh中&#xff0c;对启动步骤不太了解的&#xff0c;可参考https://blog.csdn.net/leadseczgw01/article/details/128930925BeanDefinitionRegistryPostProcessor接口有多个实现类&#xff0c;扫描Controller、Se…

【VictoriaMetrics】VictoriaMetrics单机版批量和单条数据写入(Prometheus格式)

VictoriaMetrics单机版支持以Prometheus格式的数据写入,写入支持单条数据写入以及多条数据写入,下面操作演示下如何使用 1、首先需要启动VictoriaMetrics单机版服务 2、使用postman插入单机版VictoriaMetrics,以当前时间插入数据 地址为 http://victoriaMetricsIP:8428/api…

ISYSTEM调试实践10-实时数据采集工具daqIDEA

本文介绍一种实时数据采集的工具daqIDEA&#xff0c;该软件整合在了winIDEA内&#xff0c;可以直接通过winIDEA启动。 daqIDEA类似于jlink的jscop&#xff0c;stlink也有类似功能。原理就是利用仿真探头&#xff0c;将程序运行的变量实时采集出来&#xff0c;并通过曲线的方式显…

记录次数 | V1.1.0版本变动说明

版本内容1、新增词条数据报告---统计累计次数、最早时间、最晚时间等等 2、词条加入内容文本审核功能---创建/修改词条先经过微信文本安全接口审查&#xff0c;审查通过的才能分享公开数据&#xff0c;否则只能自己可见 3、新增分享版本思考这个小程序是有自然流量的&#xff0…

跨域小样本系列4:finetune方法解决CDFSL

来源&#xff1a;投稿 作者&#xff1a;橡皮 编辑&#xff1a;学姐 带你学习跨域小样本系列1-简介篇 跨域小样本系列2-常用数据集与任务设定详解 跨域小样本系列3&#xff1a;元学习方法解决CDFSL以及两篇SOTA论文讲解 跨域小样本系列4&#xff1a;finetune方法解决CDFSL以及…

通付盾汪德嘉——设备指纹的尽头是分布式数字身份

作者简介&#xff1a;汪德嘉&#xff0c;美国威斯康星大学麦迪逊分校数学博士、九三学社社员、正高级工程师&#xff1b;时空码发明者&#xff0c;《身份危机》与《数字身份》专著作者&#xff1b;曾在ORACLE、VISA、IBM等企业部门负责总体设计、产品开发&#xff0c;2011年归国…

深度学习训练营_第P3周_天气识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f366; 参考文章&#xff1a;Pytorch实战 | 第P3周&#xff1a;彩色图片识别&#xff1a;天气识别**&#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制**␀ 本次实验有两个新增任务&…

信息论绪论

本专栏针包含信息论与编码的核心知识&#xff0c;按知识点组织&#xff0c;可作为教学或学习的参考。markdown版本已归档至【Github仓库&#xff1a;information-theory】&#xff0c;需要的朋友们自取。或者关注公众号【AIShareLab】&#xff0c;回复 信息论 也可获取。 文章目…

「2」线性代数(期末复习)

&#x1f680;&#x1f680;&#x1f680;大家觉不错的话&#xff0c;就恳求大家点点关注&#xff0c;点点小爱心&#xff0c;指点指点&#x1f680;&#x1f680;&#x1f680; 方阵的行列式 (1) &#xff5c;A^T&#xff5c;&#xff5c;A&#xff5c;(2) |&#x1d6…

树莓派 安装 宝塔linux面板5.9. 2023-2-13

​​​​​​​ 一.环境 1.硬件环境: 树莓派3b , 8GB tf卡 ,micro usb电源 2.网络环境: 网线直连路由器 , 可访问互联网 3.软件环境: 树莓派操作系统 CentOS-Userland-7-armv7hl-RaspberryPI-Minimal-2009-sda(linux) 系统刻录工具 Win32DiskImager (win) ip扫描工具 Adv…

Github 上如何提交 pull request

什么是复刻&#xff08;forking&#xff09;? 我们可以通过复刻操作将喜爱的仓库保存自己的Github账户中&#xff0c;以便独立地对其进行操作。 通过复刻&#xff0c;我们可以得到包含完整版本历史的目标仓库的实例&#xff0c;之后可以对复刻得到的仓库进行任意操作而不会影响…

iTOP3588开发板直连电脑配置方法(无线上网)配置主机IP

首先使用网线连接好主机和开发板&#xff0c;在没有上电的情况下&#xff0c;可以看到以太网显示网络电缆 被拔出&#xff0c;如下图所示&#xff1a; 当开发板上电以后&#xff0c;开发板网卡与笔记本电脑的网卡会连接&#xff0c;如下图所示&#xff1a; 然后右键点击以太网…

MY2480-16P语音模块的使用

MY2480-16P语音模块的使用开发环境&#xff1a;STM32CUBEMXKEIL5辅助软件&#xff1a;串口助手、迅捷文字转语音一、MY2480-16P语音模块引脚图及引脚定义二、选择触发方式三、使用串口控制MY2480-16P语音模块四、模块使用指南开发环境&#xff1a;STM32CUBEMXKEIL5 辅助软件&a…

Python解题 - CSDN周赛第28期

上一期周赛问哥因为在路上&#xff0c;无法参加&#xff0c;但还是抽空登上来看了一下题目。4道题都挺简单的&#xff0c;有点遗憾未能参加。不过即使参加了&#xff0c;手速也未必能挤进前十。 本期也是一样&#xff0c;感觉新增的题目都偏数学类&#xff0c;基本用不到所谓的…