“深度学习”学习日记。--加深网络

news2024/9/23 15:29:44

2023.2.13

深度学习 是加深了层的深度神经网络的学习过程。基于之前介绍的网络,只需要通过 叠加层, 就可以创建深度网络

之前的学习,已经学习到了很多东西,比如构成神经网络的各种层、参数优化方法、误差反向传播法,卷积神经网络 现在将这些技术结合起来构建一个深度网络去完成MNIST识别任务。

一,构建一个更深的网络:

这个网络使用He初始值作为权重初始值,使用Adam作为权重参数的更新;

He值的相关内容参考文章: “深度学习”学习日记。与学习有关的技巧--权重的初始值_Anthony陪你度过漫长岁月的博客-CSDN博客权重的初始值https://blog.csdn.net/m0_72675651/article/details/128748314

Adam的相关内容可以参考:“深度学习”学习日记。与学习相关的技巧 -- 参数的更新_Anthony陪你度过漫长岁月的博客-CSDN博客_深度学习参数更新SGD函数的缺点;由于权重偏置参数更新的Momentum函数,AdaGrad函数,Adam函数https://blog.csdn.net/m0_72675651/article/details/128737715 

 

 这个网络有以下特点:

1,基于3×3的小型卷积核(滤波器)的卷积层;

2,激活函数是ReLU;

3,全连接层的后面使用Droput层;

实验代码:这里的epoch设置为20,可能神经网络训练(学习)耗时会在5小时以上,epoch可以减小或增大以缩减或增加雪莲时长,当然对正确率也有影响。

import os
import sys
import numpy as np
import matplotlib as plt
from collections import OrderedDict

sys.path.append(os.pardir)

# MNIST数据导入
try:
    import urllib.request
except ImportError:
    raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle

url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {
    'train_img': 'train-images-idx3-ubyte.gz',
    'train_label': 'train-labels-idx1-ubyte.gz',
    'test_img': 't10k-images-idx3-ubyte.gz',
    'test_label': 't10k-labels-idx1-ubyte.gz'
}

dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"

train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784


def _download(file_name):
    file_path = dataset_dir + "/" + file_name

    if os.path.exists(file_path):
        return

    print("Downloading " + file_name + " ... ")
    urllib.request.urlretrieve(url_base + file_name, file_path)
    print("Done")


def download_mnist():
    for v in key_file.values():
        _download(v)


def _load_label(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)
    print("Done")

    return labels


def _load_img(file_name):
    file_path = dataset_dir + "/" + file_name

    print("Converting " + file_name + " to NumPy Array ...")
    with gzip.open(file_path, 'rb') as f:
        data = np.frombuffer(f.read(), np.uint8, offset=16)
    data = data.reshape(-1, img_size)
    print("Done")

    return data


def _convert_numpy():
    dataset = {}
    dataset['train_img'] = _load_img(key_file['train_img'])
    dataset['train_label'] = _load_label(key_file['train_label'])
    dataset['test_img'] = _load_img(key_file['test_img'])
    dataset['test_label'] = _load_label(key_file['test_label'])

    return dataset


def init_mnist():
    download_mnist()
    dataset = _convert_numpy()
    print("Creating pickle file ...")
    with open(save_file, 'wb') as f:
        pickle.dump(dataset, f, -1)
    print("Done!")


def _change_one_hot_label(X):
    T = np.zeros((X.size, 10))
    for idx, row in enumerate(T):
        row[X[idx]] = 1

    return T


def load_mnist(normalize=True, flatten=True, one_hot_label=False):
    if not os.path.exists(save_file):
        init_mnist()

    with open(save_file, 'rb') as f:
        dataset = pickle.load(f)

    if normalize:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].astype(np.float32)
            dataset[key] /= 255.0

    if one_hot_label:
        dataset['train_label'] = _change_one_hot_label(dataset['train_label'])
        dataset['test_label'] = _change_one_hot_label(dataset['test_label'])

    if not flatten:
        for key in ('train_img', 'test_img'):
            dataset[key] = dataset[key].reshape(-1, 1, 28, 28)

    return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label'])


if __name__ == '__main__':
    init_mnist()


# 函数部分
def softmax(x):
    if x.ndim == 2:
        x = x.T
        x = x - np.max(x, axis=0)
        y = np.exp(x) / np.sum(np.exp(x), axis=0)
        return y.T

    x = x - np.max(x)  # 溢出对策
    return np.exp(x) / np.sum(np.exp(x))


def cross_entropy_error(y, t):
    if y.ndim == 1:
        t = t.reshape(1, t.size)
        y = y.reshape(1, y.size)

    if t.size == y.size:
        t = t.argmax(axis=1)

    batch_size = y.shape[0]
    return -np.sum(np.log(y[np.arange(batch_size), t] + 1e-7)) / batch_size


def im2col(input_data, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_data.shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1

    img = np.pad(input_data, [(0, 0), (0, 0), (pad, pad), (pad, pad)], 'constant')
    col = np.zeros((N, C, filter_h, filter_w, out_h, out_w))

    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            col[:, :, y, x, :, :] = img[:, :, y:y_max:stride, x:x_max:stride]

    col = col.transpose(0, 4, 5, 1, 2, 3).reshape(N * out_h * out_w, -1)
    return col


def col2im(col, input_shape, filter_h, filter_w, stride=1, pad=0):
    N, C, H, W = input_shape
    out_h = (H + 2 * pad - filter_h) // stride + 1
    out_w = (W + 2 * pad - filter_w) // stride + 1
    col = col.reshape(N, out_h, out_w, C, filter_h, filter_w).transpose(0, 3, 4, 5, 1, 2)

    img = np.zeros((N, C, H + 2 * pad + stride - 1, W + 2 * pad + stride - 1))
    for y in range(filter_h):
        y_max = y + stride * out_h
        for x in range(filter_w):
            x_max = x + stride * out_w
            img[:, :, y:y_max:stride, x:x_max:stride] += col[:, :, y, x, :, :]

    return img[:, :, pad:H + pad, pad:W + pad]


# 参数更新方法
class SGD:
    def __init__(self, lr=0.01):
        self.lr = lr

    def update(self, params, grads):
        for key in params.keys():
            params[key] -= self.lr * grads[key]


class Momentum:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None

    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)

        for key in params.keys():
            self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
            params[key] += self.v[key]


class Nesterov:
    def __init__(self, lr=0.01, momentum=0.9):
        self.lr = lr
        self.momentum = momentum
        self.v = None

    def update(self, params, grads):
        if self.v is None:
            self.v = {}
            for key, val in params.items():
                self.v[key] = np.zeros_like(val)

        for key in params.keys():
            self.v[key] *= self.momentum
            self.v[key] -= self.lr * grads[key]
            params[key] += self.momentum * self.momentum * self.v[key]
            params[key] -= (1 + self.momentum) * self.lr * grads[key]


class AdaGrad:
    def __init__(self, lr=0.01):
        self.lr = lr
        self.h = None

    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)

        for key in params.keys():
            self.h[key] += grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)


class RMSprop:
    def __init__(self, lr=0.01, decay_rate=0.99):
        self.lr = lr
        self.decay_rate = decay_rate
        self.h = None

    def update(self, params, grads):
        if self.h is None:
            self.h = {}
            for key, val in params.items():
                self.h[key] = np.zeros_like(val)

        for key in params.keys():
            self.h[key] *= self.decay_rate
            self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
            params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)


class Adam:
    def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
        self.lr = lr
        self.beta1 = beta1
        self.beta2 = beta2
        self.iter = 0
        self.m = None
        self.v = None

    def update(self, params, grads):
        if self.m is None:
            self.m, self.v = {}, {}
            for key, val in params.items():
                self.m[key] = np.zeros_like(val)
                self.v[key] = np.zeros_like(val)

        self.iter += 1
        lr_t = self.lr * np.sqrt(1.0 - self.beta2 ** self.iter) / (1.0 - self.beta1 ** self.iter)

        for key in params.keys():
            self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
            self.v[key] += (1 - self.beta2) * (grads[key] ** 2 - self.v[key])

            params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)


# 传递层(类)
class Affine:
    def __init__(self, W, b):
        self.W = W
        self.b = b

        self.x = None
        self.original_x_shape = None
        # 权重和偏置参数的导数
        self.dW = None
        self.db = None

    def forward(self, x):
        # 对应张量
        self.original_x_shape = x.shape
        x = x.reshape(x.shape[0], -1)
        self.x = x

        out = np.dot(self.x, self.W) + self.b

        return out

    def backward(self, dout):
        dx = np.dot(dout, self.W.T)
        self.dW = np.dot(self.x.T, dout)
        self.db = np.sum(dout, axis=0)

        dx = dx.reshape(*self.original_x_shape)  # 还原输入数据的形状(对应张量)
        return dx


# 输出与损失函数层
class SoftmaxWithLoss:
    def __init__(self):
        self.loss = None
        self.y = None  # softmax的输出
        self.t = None  # 监督数据

    def forward(self, x, t):
        self.t = t
        self.y = softmax(x)
        self.loss = cross_entropy_error(self.y, self.t)

        return self.loss

    def backward(self, dout=1):
        batch_size = self.t.shape[0]
        if self.t.size == self.y.size:  # 监督数据是one-hot-vector的情况
            dx = (self.y - self.t) / batch_size
        else:
            dx = self.y.copy()
            dx[np.arange(batch_size), self.t] -= 1
            dx = dx / batch_size

        return dx


# 正则化
class Dropout:
    def __init__(self, dropout_ratio=0.5):
        self.dropout_ratio = dropout_ratio
        self.mask = None

    def forward(self, x, train_flg=True):
        if train_flg:
            self.mask = np.random.rand(*x.shape) > self.dropout_ratio
            return x * self.mask
        else:
            return x * (1.0 - self.dropout_ratio)

    def backward(self, dout):
        return dout * self.mask


# 激活函数
class Relu:
    def __init__(self):
        self.mask = None

    def forward(self, x):
        self.mask = (x <= 0)
        out = x.copy()
        out[self.mask] = 0

        return out

    def backward(self, dout):
        dout[self.mask] = 0
        dx = dout

        return dx


# 卷积层
class Convolution:
    def __init__(self, W, b, stride=1, pad=0):
        self.W = W
        self.b = b
        self.stride = stride
        self.pad = pad

        self.x = None
        self.col = None
        self.col_W = None

        self.dW = None
        self.db = None

    def forward(self, x):
        FN, C, FH, FW = self.W.shape
        N, C, H, W = x.shape
        out_h = 1 + int((H + 2 * self.pad - FH) / self.stride)
        out_w = 1 + int((W + 2 * self.pad - FW) / self.stride)

        col = im2col(x, FH, FW, self.stride, self.pad)
        col_W = self.W.reshape(FN, -1).T

        out = np.dot(col, col_W) + self.b
        out = out.reshape(N, out_h, out_w, -1).transpose(0, 3, 1, 2)

        self.x = x
        self.col = col
        self.col_W = col_W

        return out

    def backward(self, dout):
        FN, C, FH, FW = self.W.shape
        dout = dout.transpose(0, 2, 3, 1).reshape(-1, FN)

        self.db = np.sum(dout, axis=0)
        self.dW = np.dot(self.col.T, dout)
        self.dW = self.dW.transpose(1, 0).reshape(FN, C, FH, FW)

        dcol = np.dot(dout, self.col_W.T)
        dx = col2im(dcol, self.x.shape, FH, FW, self.stride, self.pad)

        return dx


class Pooling:
    def __init__(self, pool_h, pool_w, stride=1, pad=0):
        self.pool_h = pool_h
        self.pool_w = pool_w
        self.stride = stride
        self.pad = pad

        self.x = None
        self.arg_max = None

    def forward(self, x):
        N, C, H, W = x.shape
        out_h = int(1 + (H - self.pool_h) / self.stride)
        out_w = int(1 + (W - self.pool_w) / self.stride)

        col = im2col(x, self.pool_h, self.pool_w, self.stride, self.pad)
        col = col.reshape(-1, self.pool_h * self.pool_w)

        arg_max = np.argmax(col, axis=1)
        out = np.max(col, axis=1)
        out = out.reshape(N, out_h, out_w, C).transpose(0, 3, 1, 2)

        self.x = x
        self.arg_max = arg_max

        return out

    def backward(self, dout):
        dout = dout.transpose(0, 2, 3, 1)

        pool_size = self.pool_h * self.pool_w
        dmax = np.zeros((dout.size, pool_size))
        dmax[np.arange(self.arg_max.size), self.arg_max.flatten()] = dout.flatten()
        dmax = dmax.reshape(dout.shape + (pool_size,))

        dcol = dmax.reshape(dmax.shape[0] * dmax.shape[1] * dmax.shape[2], -1)
        dx = col2im(dcol, self.x.shape, self.pool_h, self.pool_w, self.stride, self.pad)

        return dx


# 加深层的卷积神经网络的结构
class DeepConvNet:
    def __init__(self, input_dim=(1, 28, 28),
                 conv_param_1={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_2={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_3={'filter_num': 32, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_4={'filter_num': 32, 'filter_size': 3, 'pad': 2, 'stride': 1},
                 conv_param_5={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_6={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 hidden_size=50, output_size=10):
        # 初始化权重
        # 各层的神经元平均与前一层的几个神经元有连接(TODO:自动计算)
        pre_node_nums = np.array(
            [1 * 3 * 3, 16 * 3 * 3, 16 * 3 * 3, 32 * 3 * 3, 32 * 3 * 3, 64 * 3 * 3, 64 * 4 * 4, hidden_size])
        wight_init_scales = np.sqrt(2.0 / pre_node_nums)  # 使用ReLU的情况下推荐的初始值

        self.params = {}
        pre_channel_num = input_dim[0]
        for idx, conv_param in enumerate(
                [conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):
            self.params['W' + str(idx + 1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'],
                                                                                       pre_channel_num,
                                                                                       conv_param['filter_size'],
                                                                                       conv_param['filter_size'])
            self.params['b' + str(idx + 1)] = np.zeros(conv_param['filter_num'])
            pre_channel_num = conv_param['filter_num']
        self.params['W7'] = wight_init_scales[6] * np.random.randn(64 * 4 * 4, hidden_size)
        self.params['b7'] = np.zeros(hidden_size)
        self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)
        self.params['b8'] = np.zeros(output_size)

        # 生成层
        self.layers = []
        self.layers.append(Convolution(self.params['W1'], self.params['b1'],
                                       conv_param_1['stride'], conv_param_1['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W2'], self.params['b2'],
                                       conv_param_2['stride'], conv_param_2['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Convolution(self.params['W3'], self.params['b3'],
                                       conv_param_3['stride'], conv_param_3['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W4'], self.params['b4'],
                                       conv_param_4['stride'], conv_param_4['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Convolution(self.params['W5'], self.params['b5'],
                                       conv_param_5['stride'], conv_param_5['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W6'], self.params['b6'],
                                       conv_param_6['stride'], conv_param_6['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Affine(self.params['W7'], self.params['b7']))
        self.layers.append(Relu())
        self.layers.append(Dropout(0.5))
        self.layers.append(Affine(self.params['W8'], self.params['b8']))
        self.layers.append(Dropout(0.5))

        self.last_layer = SoftmaxWithLoss()

    def predict(self, x, train_flg=False):
        for layer in self.layers:
            if isinstance(layer, Dropout):
                x = layer.forward(x, train_flg)
            else:
                x = layer.forward(x)
        return x

    def loss(self, x, t):
        y = self.predict(x, train_flg=True)
        return self.last_layer.forward(y, t)

    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1: t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i * batch_size:(i + 1) * batch_size]
            tt = t[i * batch_size:(i + 1) * batch_size]
            y = self.predict(tx, train_flg=False)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    def gradient(self, x, t):
        self.loss(x, t)

        dout = 1
        dout = self.last_layer.backward(dout)

        tmp_layers = self.layers.copy()
        tmp_layers.reverse()
        for layer in tmp_layers:
            dout = layer.backward(dout)

        grads = {}
        for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
            grads['W' + str(i + 1)] = self.layers[layer_idx].dW
            grads['b' + str(i + 1)] = self.layers[layer_idx].db

        return grads

    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
            self.layers[layer_idx].W = self.params['W' + str(i + 1)]
            self.layers[layer_idx].b = self.params['b' + str(i + 1)]


# 训练模型(神经网络的学习过程)
class Trainer:
    def __init__(self, network, x_train, t_train, x_test, t_test,
                 epochs=20, mini_batch_size=100,
                 optimizer='SGD', optimizer_param={'lr': 0.01},
                 evaluate_sample_num_per_epoch=None, verbose=True):
        self.network = network
        self.verbose = verbose
        self.x_train = x_train
        self.t_train = t_train
        self.x_test = x_test
        self.t_test = t_test
        self.epochs = epochs
        self.batch_size = mini_batch_size
        self.evaluate_sample_num_per_epoch = evaluate_sample_num_per_epoch

        # optimzer
        optimizer_class_dict = {'sgd': SGD, 'momentum': Momentum, 'nesterov': Nesterov,
                                'adagrad': AdaGrad, 'rmsprpo': RMSprop, 'adam': Adam}
        self.optimizer = optimizer_class_dict[optimizer.lower()](**optimizer_param)

        self.train_size = x_train.shape[0]
        self.iter_per_epoch = max(self.train_size / mini_batch_size, 1)
        self.max_iter = int(epochs * self.iter_per_epoch)
        self.current_iter = 0
        self.current_epoch = 0

        self.train_loss_list = []
        self.train_acc_list = []
        self.test_acc_list = []

    def train_step(self):
        batch_mask = np.random.choice(self.train_size, self.batch_size)
        x_batch = self.x_train[batch_mask]
        t_batch = self.t_train[batch_mask]

        grads = self.network.gradient(x_batch, t_batch)
        self.optimizer.update(self.network.params, grads)

        loss = self.network.loss(x_batch, t_batch)
        self.train_loss_list.append(loss)
        if self.verbose: print("train loss:" + str(loss))

        if self.current_iter % self.iter_per_epoch == 0:
            self.current_epoch += 1

            x_train_sample, t_train_sample = self.x_train, self.t_train
            x_test_sample, t_test_sample = self.x_test, self.t_test
            if not self.evaluate_sample_num_per_epoch is None:
                t = self.evaluate_sample_num_per_epoch
                x_train_sample, t_train_sample = self.x_train[:t], self.t_train[:t]
                x_test_sample, t_test_sample = self.x_test[:t], self.t_test[:t]

            train_acc = self.network.accuracy(x_train_sample, t_train_sample)
            test_acc = self.network.accuracy(x_test_sample, t_test_sample)
            self.train_acc_list.append(train_acc)
            self.test_acc_list.append(test_acc)

            if self.verbose: print(
                "=== epoch:" + str(self.current_epoch) + ", train acc:" + str(train_acc) + ", test acc:" + str(
                    test_acc) + " ===")
        self.current_iter += 1

    def train(self):
        for i in range(self.max_iter):
            self.train_step()

        test_acc = self.network.accuracy(self.x_test, self.t_test)

        if self.verbose:
            print("=============== Final Test Accuracy ===============")
            print("test acc:" + str(test_acc))


# 主函数
(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

network = DeepConvNet()
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=20, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("deep_convnet_params.pkl")
print("Saved Network Parameters!")

运行结果:

从这些特征看出,他的识别率达到0.995,可以说非常优秀了。

对比以前的神经网络的测试集正确率效果更加可观,

“深度学习”学习日记。卷积神经网络--用CNN的实现MINIST识别任务_Anthony陪你度过漫长岁月的博客-CSDN博客搭建CNN去实现MNIST数据集的识别任务https://blog.csdn.net/m0_72675651/article/details/128980999

二,进一步提高识别精度:

世界上有许多用于完成MNIST的神经网络模型,截至2016年6月,对MNIST数据集的最高识别精度是0.9979,该方发也是以CNN为基础的。不过,他用的CNN并不是特别深层的网络(两层卷积层、两层全连接层)

除了加深层神经网络以外,我们也可以从 集成学习、学习衰减、Data Augmentation(数据扩充) 等助于提高识别精度。 特别是数据扩充。

1,数据扩充:

Data Augmentation是基于算法“人为地”扩充输入图像(训练图像)相当于,把训练集图像,通过施加旋转、垂直、平移或水平方向上的移动等微小变化,增加图像数量。

2,加深层的动机:

根据教材的实验结果表示,性能优良的神经网络有,有逐渐加深网络的层趋势。也就是说,可以看到的层越深,识别性能也越高。

加深层有一个优点就是可以减少神经网络的参数数量。等价于用更少的参数权重去达到同等水平(或者更强)的表现力

关于卷积运算参考文章:“深度学习”学习日记。卷积神经网络--卷积层_Anthony陪你度过漫长岁月的博客-CSDN博客卷积层https://blog.csdn.net/m0_72675651/article/details/128861606

掌握了卷积的运算法则后,我们可以知道公式:

输入数据的形状大小为(H,W),滤波器(卷积核)的大小为(FH,FW),输出大小为(OH,OF);

OH =\frac{H+2P-FH}{S}+1

OW=\frac{W+2P-FW}{S}+1

 当一个形状为(5,5)输入数据,只有一层卷积层将结果经过卷积运算变成一个(1,1),则需要一个5×5的卷积核,一共25个参数;

当我们有两层卷积层,可以在第一层先通过一个3×3的卷积核,第二层再通过一个3×3的卷积核,这时,我们值需要18的参数;

像这样,通过叠加小型滤波器来加深神经网络的好处就是可以减少参数的设置,扩大 感受视野 (receptive field,给神经元施加变化的某个局部空间区域)。并且,通过叠加层,将ReLU层,将ReLU的激活函数夹在卷积层的中见,进一步提高了网络的表现力。这是因为像网络添加了基于激活函数的“非线性”表现力,通过非线性函数的叠加,可以表现更加复杂的东西。

加深层的第二个好处就是是的学习更加高效:

这篇文章讲到 :“深度学习”学习日记。卷积神经网络--用CNN的实现MINIST识别任务_Anthony陪你度过漫长岁月的博客-CSDN博客搭建CNN去实现MNIST数据集的识别任务https://blog.csdn.net/m0_72675651/article/details/128980999

根据深度学习的可视化相关研究,随着层次的加深,提取的信息(反应强烈的神经元)也会缘来缘抽象。最开始是对简单的边缘有相应,接下来的层对纹理有反应,再后面的层会对更加复杂的物体部件有反应。也就是说,随着层次的加深,神经元从简单的形状向“高级”信息变化。

如果,我们想要写一个识别“狗”的神经网络,那我使用浅层神经网络的话我们就需要,在每一层神经网络中考虑很多参数(权重),导致耗时很长,正确率也差强人意;

如果通过加深网络去实现的化,就可以分层次地分解需要学习的问题。因此,在每一层卷积层中索要解决的问题就会变得简单。比如,最开始的层值要专注与学习边缘,只用较少的数据就可以高效的学习,通过加深层,可以使用上一次提取的边缘信息。

不够要注意的是,深层化是由大数据、计算能力等即便加深层也能正确地进行学习的新技术与环境支撑的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/342759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

android kotlin 协程(二) 基本入门2

android kotlin 协程(二) config: system: macOS android studio: 2022.1.1 Electric Eel gradle: gradle-7.5-bin.zip android build gradle: 7.1.0 Kotlin coroutine core: 1.6.4 tips:前面几篇全都是协程的基本使用,没有源码,等后面对协程有个基本理解之后,才会简单的…

(一)初识Streamlit(附安装)

本入门指南介绍Streamlit的工作原理、如何在您首选的操作系统上安装Streamlit&#xff0c;以及如何创建第一个Streamlit应用程序&#xff01; 1 安装 1.1 先决条件 Python 3.7 – Python 3.11 **注&#xff1a;我这里使用的是anaconda的虚拟环境&#xff0c;用pycharm编写代…

JavaWeb--MavenMybatis基础

JavaWeb--Maven&Mybatis基础1 Maven1.1 Maven简介1.1.1 Maven模型1.1.2 仓库1.2 Maven基本使用1.2.1 Maven 常用命令1.2.2 Maven 生命周期1.3 IDEA使用Maven1.3.1 IDEA配置Maven环境1.3.2 Maven 坐标详解1.3.3 IDEA 创建 Maven项目1.3.4 IDEA 导入 Maven项目1.4 依赖管理1.…

UVa 11212 Editing a Book 编辑书稿 IDA* Iterative Deepening A Star 迭代加深搜剪枝

题目链接&#xff1a;Editing a Book 题目描述&#xff1a; 给定nnn个(1<n<10)1<n<10)1<n<10)数字&#xff0c;数字分别是1,2,3,...,n1, 2, 3, ...,n1,2,3,...,n&#xff0c;但是顺序是打乱的&#xff0c;你可以选择一个索引区间的数字进行剪切操作。问最少进…

即便考分很好也不予录取的研究生复试红线,都是原则性问题

在浙大研究生招生录取政策文件中有这么一句话&#xff1a;坚持“按需招生、全面衡量、择优录取、宁缺毋滥”的原则&#xff0c;以提高人才选拔质量为核心&#xff0c;在确保安全性、公平性和科学性的基础上&#xff0c;做到统筹兼顾、精准施策、严格管理。字字体现出研究生招生…

保姆级手把手教你如何使用HTTP远程连接Docker?

为什么要远程访问Docker? 可以使用http协议&#xff0c;获取json格式数据&#xff0c;很方便使用代码控制镜像&#xff0c;so easy 怎么配置才可以远程访问呢&#xff1f; 新建或修改这个文件&#xff1a;如果没有就新增哦~ /etc/systemd/system/docker.service.d/overrid…

Flink中核心重点总结

目录 1. 算子链 1.1. 一对一&#xff08;One-to-one&#xff0c; forwarding&#xff09; 1.2. 重分区&#xff08;Redistributing&#xff09; 1.3. 为什么有算子链 2. 物理分区&#xff08;Physical Partitioning&#xff09; 2.1. 什么是分区 2.2. 随机分区&#xff…

【Python学习笔记】30.Python3 命名空间和作用域

前言 本章介绍Python的命名空间和作用域。 命名空间 先看看官方文档的一段话&#xff1a; A namespace is a mapping from names to objects.Most namespaces are currently implemented as Python dictionaries。 命名空间(Namespace)是从名称到对象的映射&#xff0c;大…

在中国程序员工作是青春饭吗?

上个月公司告诉我毕业了。 我打开boss直聘&#xff0c;一溜溜的外包公司和我打招呼。 我寻思我说不定啥时候就离开深圳了&#xff0c;外包不外包也无所谓钱到位就行。&#xff08;大公司学历不够格也进不去&#xff09; 结果华为、平安的外包告诉我&#xff0c;不好意思呀&a…

配置MyBatis Plus 的分页查询功能

配置MyBatis Plus 的分页查询功能一. 回顾Mysql分页查询二. 配置MyBatis Plus 分页功能2.1 配置分页拦截器2.2 进行分页查询三. 开启MyBatis Plus的运行日志一. 回顾Mysql分页查询 limit 是MySQL当中特有的&#xff01;其他数据库没有&#xff01;不通用&#xff1b;limit 是M…

ES6新增特性总结

目录 let和const命令 模板字符串 扩展运算符 解构赋值 对象解构 数组解构 扩展的函数 带参数默认值的函数 剩余参数表示不定参 箭头函数 扩展的对象 直接写入变量和函数&#xff0c;作为对象的属性和方法 新增Object.is()/Object.assign()/Object.keys/Object.val…

内网渗透(二十一)之Windows协议认证和密码抓取-Golden Ticket黄金票据制作原理及利用方式

系列文章第一章节之基础知识篇 内网渗透(一)之基础知识-内网渗透介绍和概述 内网渗透(二)之基础知识-工作组介绍 内网渗透(三)之基础知识-域环境的介绍和优点 内网渗透(四)之基础知识-搭建域环境 内网渗透(五)之基础知识-Active Directory活动目录介绍和使用 内网渗透(六)之基…

UI自动化测试是什么?什么项目适合做UI自动化测试

1. 页面对象设计模式的优势(1) 创建可以跨多个测试用例共享的代码(2) 减少代码的重复性(3) 如果界面需要维护&#xff0c;只需要修改一个地方&#xff0c;修改以及维护的成本减少2. 每个目录结构表达的意思(1) Base:基础层&#xff0c;是用来编写定位元素(2) Common&#xff1a…

[chatGPT] 如何通过JNI在Android上显示实时视频流

目录背景正文layout xmljavaCjava总结一&#xff1a;追问&#xff1a;CC总结二&#xff1a;答疑解惑C画蛇添足 视频不显示黑屏最后感叹科技的更新速度&#xff0c;真的程序员都可能会被替代&#xff0c;下一个时代最大的问题应该是劳动力过剩&#xff0c;导致社会性结构改变&am…

Hudi-集成 Hive

集成 Hive Hudi 源表对应一份 HDFS 数据&#xff0c;通过 Spark&#xff0c;Flink 组件或者 Hudi CLI&#xff0c;可以将 Hudi 表的数据映射为 *Hive 外部表*&#xff0c;基于该外部表&#xff0c; Hive可以方便的进行实时视图&#xff0c;读优化视图以及增量视图的查询。 集…

【软件相关】文献管理工具——Zotero

文章目录0 前期教程1 前言2 一些说明3 下载安装4 功能一&#xff1a;插入文献引用格式5 功能二&#xff1a;从网页下载文献pdf和题录6 功能三&#xff1a;数据多平台同步7 功能四&#xff1a;通过DOI添加条目及添加订阅8 安装xpi插件9 功能五&#xff1a;智能识别中英文文献10 …

The Number Of ThreadPoolExecutor

序言整理下Java 线程池中线程数量如何设置的依据巨人肩膀:https://blog.csdn.net/weilaizhixing007/article/details/125955693https://blog.csdn.net/yuyan_jia/article/details/120298564#:~:text%E4%B8%80%E4%B8%AA%E7%BA%BF%E7%A8%8B%E6%B1%A0%E5%A4%84%E7%90%86%E8%AE%A1,…

MongoDB--》文档查询的详细具体操作

目录 统计查询 分页列表查询 排序查询 正则的复杂条件查询 比较查询 包含查询 条件连接查询 统计查询 统计查询使用count()方法&#xff0c;其语法格式如下&#xff1a; db.collection.count(query,options) ParameterTypeDescriptionquerydocument查询选择条件optio…

int和Integer有什么区别?

第7讲 | int和Integer有什么区别&#xff1f; Java 虽然号称是面向对象的语言&#xff0c;但是原始数据类型仍然是重要的组成元素&#xff0c;所以在面试中&#xff0c;经常考察原始数据类型和包装类等 Java 语言特性。 今天我要问你的问题是&#xff0c;int 和 Integer 有什么…

JUC并发编程 Ⅱ -- 共享模型之管程(下)

文章目录wait notifywait / notify的原理API 介绍sleep与wait辨析优雅地使用wait/notify保护性暂停模式超时版 GuardedObjectjoin原理多任务版GuardedObject生产者-消费者模式定义实现Park & Unpark基本使用特点原理重新理解线程状态转换线程的活跃性死锁定位死锁活锁饥饿R…