02- pandas 数据库 (数据库)

news2025/1/16 20:06:43

pandas 数据库重点:

  • pandas 的主要数据结构: Series (一维数据)与 DataFrame (二维数据)。

  • pd.DataFrame(data = np.random.randint(0,151,size = (5,3)),  # 生成pandas数据
                            index = ['Danial','Brandon','softpo','Ella','Cindy'],     # 行索引
                            columns=['Python','Math','En'])        # 列索引

  • data.shape       # (150, 3)    # 查看形状

  • data.head(10)     # 查看前10列数据

  • 存储数据常用格式:  .csv,   .xls,  .h5

  • df.loc[['A','C','D','F']]     # 选取指定行标签数据

  • df[ df.Python > 100 ]      判断Python分数是否大于100,返回值是boolean类型的Series

  • pd.concat([df1,df2],axis = 0)   # df1和df2行串联,df2的行追加df2行后面

  • df.insert(loc = 1,column='Pytorch',value=1024)    # 插入列

  • 空数据筛选: df.isnull()

  •  df.rename(index = {'A':'AA','B':'BB'},columns = {'Python':'人工智能'})     # 重命名轴索引

  • df.replace([0,7],2048)     # 将0和7替换为2048

  • 去重:  df['Keras'].unique()

  • 基础数据处理:
import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
                  index = list('ABCDEFHIJKLMNOPQRSTU'),
                  columns=['Python','Tensorflow','Keras'])
# 1、简单统计指标
df.count() # 非NA值的数量
df.max(axis = 0) #轴0最大值,即每一列最大值
df.min() #默认计算轴0最小值
df.median() # 中位数
df.sum() # 求和
df.mean(axis = 1) #轴1平均值,即每一行的平均值
df.quantile(q = [0.2,0.4,0.8]) # 分位数
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最小值、四分位数、最大值

第一部分 pandas数据库

  • Python在数据处理和准备方面一直做得很好,但在数据分析和建模方面就差一些。需要pandas的补充。
  • pandas与出色的 jupyter工具包和其他库相结合的比较好
  • pandas的主要数据结构是 Series (一维数据)与 DataFrame (二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数案例
  • 处理数据一般分为几个阶段:数据整理与清洗、数据分析与建模、数据可视化与制表,Pandas 是处理数据的理想工具。

第二部分 数据结构

第一节 Series

用列表生成 Series时,Pandas 默认自动生成整数索引,也可以指定索引

l = [0,1,7,9,np.NAN,None,1024,512]
# 无论是numpy中的NAN还是Python中的None在pandas中都以缺失数据NaN对待
s1 = pd.Series(data = l)  # pandas自动添加索引
s2 = pd.Series(data = l,index = list('abcdefhi'),dtype='float32') # 指定行索引
# 传入字典创建,key行索引
s3 = pd.Series(data = {'a':99,'b':137,'c':149},name = 'Python_score') 
display(s1,s2,s3)
''' s1数组:
0       0.0
1       1.0
2       7.0
3       9.0
4       NaN
5       NaN
6    1024.0
7     512.0
dtype: float64

s3数组: 
a     99
b    137
c    149
Name: Python_score, dtype: int64'''

第二节 DataFrame

DataFrame是由多种类型的列构成的二维标签数据结构,类似于 Excel 、SQL 表,或 Series 对象构成的字典。

import numpy as np
import pandas as pd
# index 作为行索引,字典中的key作为列索引,创建了3*3的DataFrame表格二维数组
df1 = pd.DataFrame(data = {'Python':[99,107,122],'Math':[111,137,88],
                           'En':[68,108,43]},     # key作为列索引
                   index = ['张三','李四','Michael']) # 行索引
df2 = pd.DataFrame(data = np.random.randint(0,151,size = (5,3)),
                   index = ['Danial','Brandon','softpo','Ella','Cindy'], # 行索引
                   columns=['Python','Math','En'])   # 列索引

df2的数据:

第三部分 数据查看

查看DataFrame的常用属性和DataFrame的概览和统计信息:

import numpy as np
import pandas as pd
# 创建 shape(150,3)的二维标签数组结构DataFrame
df = pd.DataFrame(data = np.random.randint(0,151,size = (150,3)),
                   index = None,# 行索引默认
                   columns=['Python','Math','En'])# 列索引
# 查看其属性、概览和统计信息
df.head(10)   # 显示头部10行,默认5个
df.tail(10)   # 显示末尾10行,默认5个
df.shape      # (150, 3)  # 查看形状,行数和列数
df.dtypes     # Python: int32 Math: int32 En: int32 dtype: object  # 查看数据类型
df.index      # RangeIndex(start=0, stop=150, step=1)  # 行索引
df.columns    # Index(['Python', 'Math', 'En'], dtype='object') # 列索引
df.values     # 对象值,二维ndarray数组
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最小值、四分位数、最大值
df.info()     # 查看列索引、数据类型、非空计数和内存信息

第四部分 数据输入与输出

第一节 csv文件

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]),     # 薪资情况
                  columns=['IT','化工','生物','教师','士兵'])
# 保存到当前路径下,文件命名是:salary.csv。csv逗号分割值文件格式
df.to_csv('./salary.csv',
          sep = ';',      # 文本分隔符,默认是逗号
          header = True,  # 是否保存列索引
          index = True)  # 是否保存行索引,保存行索引,文件被加载时,默认行索引会作为一列
# 加载
pd.read_csv('./salary.csv',
            sep = ';',      # 默认是逗号
            header = [0],   # 指定列索引
            index_col=0)    # 指定行索引
pd.read_table('./salary.csv', # 和read_csv类似,读取限定分隔符的文本文件
            sep = ';',
            header = [0],  #指定列索引
            index_col=1)   # 指定行索引,IT作为行索引

第二节 Excel文件

import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]),   # 薪资情况
               columns=['IT','化工','生物','教师','士兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]),  # 计算机考试成绩
                   columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,文件命名是:salary.xls
df1.to_excel('./salary.xls',
            sheet_name = 'salary',  # Excel中工作表的名字
            header = True,         # 是否保存列索引
            index = False)         # 是否保存行索引,保存行索引
pd.read_excel('./salary.xls',
              sheet_name=0,        # 读取哪一个Excel中工作表,默认第一个
              header = 0,          # 使用第一行数据作为列索引
              names = list('ABCDE'),     # 替换行索引
              index_col=1)         # 指定行索引,B作为行索引
# 一个Excel文件中保存多个工作表
with pd.ExcelWriter('./data.xlsx') as writer:
    df1.to_excel(writer,sheet_name='salary',index = False)
    df2.to_excel(writer,sheet_name='score',index = False)
pd.read_excel('./data.xlsx',
              sheet_name='salary') # 读取Excel中指定名字的工作表

第三节 SQL

import pandas as pd
# SQLAlchemy是Python编程语言下的一款开源软件。提供了SQL工具包及对象关系映射(ORM)工具
from sqlalchemy import create_engine
df = pd.DataFrame(data=np.random.randint(0,50,size = [150,3]),# 计算机科目的考试成绩
                  columns=['Python','Tensorflow','Keras'])
# 数据库连接
cn=create_engine('mysql+pymysql://root:12345678@localhost/pandas?charset=UTF8MB4')
# 保存到数据库
df.to_sql('score',#数据库中表名
          cn,# 数据库连接
          if_exists='append')   # 如果表名存在,追加数据
# 从数据库中加载
pd.read_sql('select * from score limit 10', # sql查询语句
            cn, # 数据库连接
            index_col='Python') # 指定行索引名

第四节 HDF5

HDF5,可以存储不同类型数据的文件格式,后缀通常是.h5,它的结构是层次性的。一个HDF5文件可以被看作是一个组包含了各类不同的数据集
对于HDF5文件中的数据存储,有两个核心概念:(group 和 dataset)

  • dataset 代表数据集,一个文件当中可以存放不同种类的数据集,这些数据集如何管理,就用到了group, 最直观的理解,可以参考我们的文件管理系统,不同的文件位于不同的目录下
import numpy as np
import pandas as pd
df1 = pd.DataFrame(data = np.random.randint(0,50,size = [50,5]),  # 薪资情况
                   columns=['IT','化工','生物','教师','士兵'])
df2 = pd.DataFrame(data = np.random.randint(0,50,size = [150,3]), # 计算机科目成绩
                   columns=['Python','Tensorflow','Keras'])
# 保存到当前路径下,文件命名是:data.h5
df1.to_hdf('./data.h5',key='salary')      # 保存数据的key,标记
df2.to_hdf('./data.h5',key = 'score')

pd.read_hdf('./data.h5', key = 'salary') # 获取指定的标记、key的数据

第五部分 数据选取

第一节 字段数据

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [150,3]),# 计算机科目成绩
                   columns=['Python','Tensorflow','Keras'])
df['Python']  # Name: Python, Length: 150, dtype: int32  # 获取单列,Series
df.Python     # Name: Python, Length: 150, dtype: int32  # 获取单列,Series
df[['Python','Keras']]   # 150 rows × 2 columns  # 获取多列,DataFrame
df[3:15]      # 行切片

第二节 标签选择

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科目成绩
                  index = list('ABCDEFGHIJ'),# 行标签
                  columns=['Python','Tensorflow','Keras'])
df.loc[['A','C','D','F']]  # 选取指定行标签数据
df.loc['A':'E',['Python','Keras']] # 根据行标签切片,选取指定列标签的数据
df.loc[:,['Keras','Tensorflow']] # :默认保留所有行
df.loc['E'::2,'Python':'Tensorflow'] # 行切片从标签E开始每2个中取一个,列标签进行切片
df.loc['A','Python']       # 12  # 选取标量值

第三节 位置选择

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]), # 计算机科目成绩
                  index = list('ABCDEFGHIJ'),# 行标签
                  columns=['Python','Tensorflow','Keras']) # 列标签
df.iloc[4] # 用整数位置选择。
df.iloc[2:8,0:2] # 用整数切片,类似NumPy
df.iloc[[1,3,5],[0,2,1]] # 整数列表按位置切片
df.iloc[1:3,:] # 行切片
df.iloc[:,:2] # 列切片
df.iloc[0,2] # 选取标量值

第四节 boolean索引

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]), # 计算机科目成绩
                  index = list('ABCDEFGHIJ'),# 行标签,用户
                  columns=['Python','Tensorflow','Keras']) # 考试科目
cond1 = df.Python > 100 #  判断Python分数是否大于100,返回值是boolean类型的Series
df[cond1]     # 返回Python分数大于100分的用户所有考试科目数据
cond2 = (df.Python > 50) & (df['Keras'] > 50)   # &与运算
df[cond2]     # 返回Python和Keras同时大于50分的用户的所有考试科目数据
df[df > 50]   # 选择DataFrame中满足条件的值,如果满足返回值,不然返回空数据NaN
df[df.index.isin(['A','C','F'])]   # isin判断是否在数组中,返回也是boolean类型值

第五节 赋值操作

import pandas as pd
import numpy as np
df = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]),# 计算机科目成绩
                  index = list('ABCDEFGHIJ'),# 行标签,用户
                  columns=['Python','Tensorflow','Keras']) # 考试科目
s = pd.Series(data = np.random.randint(0,150,size = 9),
              index=list('BCDEFGHIJ'), name = 'PyTorch')
df['PyTorch'] = s    # 增加一列,DataFrame行索引自动对齐
df.loc['A','Python'] = 256    # 按标签赋值
df.iloc[3,2] = 512    # 按位置赋值
df.loc[:,'Python'] = np.array([128]*10)    # 按NumPy数组进行赋值
df[df >= 128] = -df    # 按照where条件进行赋值,大于等于128变成原来的负数,否则不变

   效果:

 第六部分 数据集成

pandas 提供了多种将 Series、DataFrame 对象组合在一起的功能.

第一节 concat数据串联

import pandas as pd
import numpy as np
df1 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]), # 计算机科目成绩
                  index = list('ABCDEFGHIJ'),   # 行标签,用户
                  columns=['Python','Tensorflow','Keras'])  # 考试科目
df2 = pd.DataFrame(data = np.random.randint(0,150,size = [10,3]), # 计算机科目成绩
                  index = list('KLMNOPQRST'),   # 行标签,用户
                  columns=['Python','Tensorflow','Keras'])  # 考试科目
df3 = pd.DataFrame(data = np.random.randint(0,150,size = (10,2)),
                  index = list('ABCDEFGHIJ'),
                  columns=['PyTorch','Paddle'])
pd.concat([df1,df2],axis = 0)   # df1和df2行串联,df2的行追加df2行后面
df1.append(df2) # 在df1后面追加df2
pd.concat([df1,df3],axis = 1)       # df1和df2列串联,df2的列追加到df1列后面

第二节 插入

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
                  index = list('ABCDEFGHIJ'),
                  columns = ['Python','Keras','Tensorflow'])
df.insert(loc = 1,column='Pytorch',value=1024) # 插入列
# 对行的操作,使用追加append,默认在最后面,无法指定位置
# 如果想要在指定位置插入行:切割-添加-合并

第三节 Join SQL风格合并

数据集的 合并(merge)或连接(join) 运算是通过一个或者多个键将数据链接起来的。这些运算是关系型数据库的核心操作。pandas的merge函数是数据集进行join运算的主要切入点。

import pandas as pd
import numpy as np
# 表一中记录的是name和体重信息
df1 = pd.DataFrame(data = {'name':['softpo','Daniel','Brandon','Ella'],
                           'weight':[70,55,75,65]})
# 表二中记录的是name和身高信息
df2 = pd.DataFrame(data = {'name':['softpo','Daniel','Brandon','Cindy'],
                           'height':[172,170,170,166]})
df3 = pd.DataFrame(data = {'名字':['softpo','Daniel','Brandon','Cindy'],
                           'height':[172,170,170,166]})
# 根据共同的name将俩表的数据,进行合并
pd.merge(df1,df2,        # 结果为交集, 6数据
         how = 'inner',  # 内合并代表两对象交集
         on = 'name')
pd.merge(df1,df3,        # 数据量较大
         how = 'outer',   # 全外连接,两对象并集
         left_on = 'name', # 左边DataFrame使用列标签 name进行合并
         right_on = '名字') # 右边DataFrame使用列标签 名字进行合并
# 创建10名学生的考试成绩
df4 = pd.DataFrame(data = np.random.randint(0,151,size = (10,3)),
                   index = list('ABCDEFHIJK'),
                   columns=['Python','Keras','Tensorflow'])
# 计算每位学生各科平均分,转换成DataFrame
score_mean = pd.DataFrame(df4.mean(axis = 1).round(1),columns=['平均分'])
# 将平均分和df4使用merge进行合并,它俩有共同的行索引
pd.merge(left = df4,right = score_mean,
         left_index=True,# 左边DataFrame使用行索引进行合并
         right_index=True)# 右边的DataFrame使用行索引进行合并

效果:

 第七部分 数据清洗

import numpy as np
import pandas as pd
df = pd.DataFrame(data = {'color':['red','blue','red','green','blue',None,'red'],
                          'price':[10,20,10,15,20,0,np.NaN]})
# 1、重复数据过滤
df.duplicated()       # 判断是否存在重复数据
df.drop_duplicates()  # 删除重复数据

# 2、空数据过滤
df.isnull()   # 判断是否存在空数据,存在返回True,否则返回False
df.dropna(how = 'any')  # 删除空数据
df.fillna(value=1111)   # 填充空数据

# 3、指定行或者列过滤
del df['color'] # 直接删除某列
df.drop(labels = ['price'], axis = 1)  # 删除指定列
df.drop(labels = [0,1,5],axis = 0)     # 删除指定行

# 4、函数filter使用,过滤器,删除
df = pd.DataFrame(np.array(([3,7,1], [2, 8, 256])),
                  index=['dog', 'cat'],
                  columns=['China', 'America', 'France'])
df.filter(items=['China', 'France'])
# 根据正则表达式删选列标签
df.filter(regex='a$', axis=1)
# 选择行中包含og
df.filter(like='og', axis=0)

# 5、异常值过滤
df2 = pd.DataFrame(data = np.random.randn(10000,3)) # 正态分布数据
# 3σ过滤异常值,σ即是标准差
cond = (df2 > 3*df2.std()).any(axis = 1)
index = df2[cond].index # 不满足条件的行索引
df2.drop(labels=index,axis = 0) # 根据行索引,进行数据删除


第八部分 数据转换

第一节 轴和元素替换

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
''' 1、重命名轴索引 '''
df.rename(index = {'A':'AA','B':'BB'},columns = {'Python':'人工智能'}) 

# 2、替换值
df.replace(3,1024)  # 将3替换为1024
df.replace([0,7],2048)  # 将0和7替换为2048
df.replace({0:512,np.nan:998})  # 根据字典键值对进行替换
df.replace({'Python':2},-1024)  # 将Python这一列中等于2的,替换为-1024

第二节 map Series元素改变

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据

# 1、map批量元素改变,Series专有
df['Keras'].map({1:'Hello',5:'World',7:'AI'}) # 字典映射
df['Python'].map(lambda x:True if x >=5 else False) # 隐式函数映射
def convert(x): # 显示函数映射
    if x%3 == 0:
        return True
    elif x%3 == 1:
        return False
df['Tensorflow'].map(convert)

第三节 apply元素改变 (既支持 Series,也支持 DataFrame)

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据
# 1、apply 应用方法数据转换,通用
# Series,其中x是Series中元素
df['Keras'].apply(lambda x:True if x >5 else False) 
# DataFrame,其中的x是DataFrame中列或者行,是Series
df.apply(lambda x : x.median(),axis = 0) # 列的中位数
def convert(x): # 自定义方法
    return (x.mean().round(1), x.count())
df.apply(convert,axis = 1) # 行平均值,计数

# 2、applymap DataFrame专有
df.applymap(lambda x : x + 100) # 计算DataFrame中每个元素

第四节 transform变形金刚

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])
df.iloc[4,2] = None # 空数据

# 1、一列执行多项计算
df['Python'].transform([np.sqrt,np.exp]) # Series处理
def convert(x):
    if x.mean() > 5:
        x *= 10
    else:
        x *= -10
    return x
# 2、多列执行不同计算
df.transform({'Python':convert,'Tensorflow':np.max,'Keras':np.min}) # DataFrame处理

第五节 重排随机抽样哑变量

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,10,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])

ran = np.random.permutation(10) # 随机重排
df.take(ran) # 重排DataFrame
df.take(np.random.randint(0,10,size = 15)) # 随机抽样

# 哑变量,独热编码,1表示有,0表示没有
df = pd.DataFrame({'key':['b','b','a','c','a','b']})
pd.get_dummies(df,prefix='',prefix_sep='')

第九部分 数据重塑

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,100,size = (10,3)),
                  index = list('ABCDEFHIJK'),
                  columns=['Python','Tensorflow','Keras'])
df.T # 转置
df2 = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
                   index = pd.MultiIndex.from_product([list('ABCDEFHIJK'),
                                                       ['期中','期末']]),#多层索引
                   columns=['Python','Tensorflow','Keras'])
df2.unstack(level = -1) # 行旋转成列,level指定哪一层,进行变换
df2.stack() # 列旋转成行
df2.stack().unstack(level = 1) # 行列互换

# 多层索引DataFrame数学计算
df2.mean() # 各学科平均分
df2.mean(level=0) # 各学科,每个人期中期末平均分
df2.mean(level = 1) # 各学科,期中期末所有人平均分

第十部分 数学和统计方法

第一节 简单统计指标

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,100,size = (20,3)),
                  index = list('ABCDEFHIJKLMNOPQRSTU'),
                  columns=['Python','Tensorflow','Keras'])
# 1、简单统计指标
df.count() # 非NA值的数量
df.max(axis = 0) #轴0最大值,即每一列最大值
df.min() #默认计算轴0最小值
df.median() # 中位数
df.sum() # 求和
df.mean(axis = 1) #轴1平均值,即每一行的平均值
df.quantile(q = [0.2,0.4,0.8]) # 分位数
df.describe() # 查看数值型列的汇总统计,计数、平均值、标准差、最小值、四分位数、最大值

第二节 索引标签、位置获取

# 2、索引位置
df['Python'].argmin() # 计算最小值位置
df['Keras'].argmax() # 最大值位置
df.idxmax() # 最大值索引标签
df.idxmin() # 最小值索引标签

第三节 更多统计指标

# 3、更多统计指标
df['Python'].value_counts() # 统计元素出现次数
df['Keras'].unique() # 去重
df.cumsum() # 累加
df.cumprod() # 累乘
df.std() # 标准差
df.var() # 方差
df.cummin() # 累计最小值
df.cummax() # 累计最大值
df.diff() # 计算差分
df.pct_change() # 计算百分比变化

# 4、高级统计指标
df.cov() # 属性的协方差
df['Python'].cov(df['Keras']) # Python和Keras的协方差
df.corr() # 所有属性相关性系数
df.corrwith(df['Tensorflow']) # 单一属性相关性系数

第十一部分 数据排序

import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,30,size = (30,3)),
                  index = list('qwertyuioijhgfcasdcvbnerfghjcf'),
                  columns = ['Python','Keras','Pytorch'])
# 1、索引列名排序
df.sort_index(axis = 0,ascending=True) # 按索引排序,降序
df.sort_index(axis = 1,ascending=False) #按列名排序,升序
# 2、属性值排序
df.sort_values(by = ['Python']) #按Python属性值排序
df.sort_values(by = ['Python','Keras'])#先按Python,再按Keras排序

# 3、返回属性n大或者n小的值
df.nlargest(10, columns='Keras') # 根据属性Keras排序,返回最大10个数据
df.nsmallest(5, columns='Python') # 根据属性Python排序,返回最小5个数据

第十二部分 分箱操作

  • 分箱操作就是将连续数据转换为分类对应物的过程。比如将连续的身高数据划分为:矮中高。
  • 分箱操作分为等距分箱等频分箱
  • 分箱操作也叫面元划分或者离散化。
import numpy as np
import pandas as pd
df = pd.DataFrame(data = np.random.randint(0,150,size = (100,3)),
                  columns=['Python','Tensorflow','Keras'])
# 1、等宽分箱
pd.cut(df.Python,bins = 3)
# 指定宽度分箱
pd.cut(df.Keras, # 分箱数据
       bins = [0,60,90,120,150], # 分箱断点
       right = False, # 左闭右开
       labels=['不及格','中等','良好','优秀']) # 分箱后分类

# 2、等频分箱
pd.qcut(df.Python,q = 4,# 4等分
        labels=['差','中','良','优']) # 分箱后分类

第十三部分 分组聚合

第一节 分组

import numpy as np
import pandas as pd
# 准备数据
df = pd.DataFrame(data = {'sex':np.random.randint(0,2,size = 300), # 0男,1女
                          'class':np.random.randint(1,9,size = 300),#1~8八个班
                          'Python':np.random.randint(0,151,size = 300),#Python成绩
                          'Keras':np.random.randint(0,151,size =300),#Keras成绩
                          'Tensorflow':np.random.randint(0,151,size=300),
                          'Java':np.random.randint(0,151,size = 300),
                          'C++':np.random.randint(0,151,size = 300)})
df['sex'] = df['sex'].map({0:'男',1:'女'}) # 将0,1映射成男女
# 1、分组->可迭代对象
# 1.1 先分组再获取数据
g = df.groupby(by = 'sex')[['Python','Java']] # 单分组
for name,data in g:
    print('组名:',name)
    print('数据:',data)
df.groupby(by = ['class','sex'])[['Python']] # 多分组
# 1.2 对一列值进行分组
df['Python'].groupby(df['class']) # 单分组
df['Keras'].groupby([df['class'],df['sex']]) # 多分组
# 1.3 按数据类型分组
df.groupby(df.dtypes,axis = 1)
# 1.4 通过字典进行分组
m = {'sex':'category','class':'category','Python':'IT','Keras':'IT',
'Tensorflow':'IT','Java':'IT','C++':'IT'}
for name,data in df.groupby(m,axis = 1):
    print('组名',name)
    print('数据',data)

第二节 分组聚合

# 2、分组直接调用函数进行聚合
# 按照性别分组,其他列均值聚合
df.groupby(by = 'sex').mean().round(1) # 保留1位小数
# 按照班级和性别进行分组,Python、Keras的最大值聚合
df.groupby(by = ['class','sex'])[['Python','Keras']].max()
# 按照班级和性别进行分组,计数聚合。统计每个班,男女人数
df.groupby(by = ['class','sex']).size()
# 基本描述性统计聚合
df.groupby(by = ['class','sex']).describe()

第三节 分组聚合apply、transform

# 3、分组后调用apply,transform封装单一函数计算
# 返回分组结果
df.groupby(by = ['class','sex'])[['Python','Keras']].apply(np.mean).round(1)
def normalization(x):
    return (x - x.min())/(x.max() - x.min()) # 最大值最小值归一化
# 返回全数据,返回DataFrame.shape和原DataFrame.shape一样。
df.groupby(by = ['class','sex'])[['Python',
                                  'Tensorflow']].transform(normalization).round(3)

第四节 分组聚合agg

# 4、agg 多中统计汇总操作
# 分组后调用agg应用多种统计汇总
df.groupby(by = ['class','sex'])[['Tensorflow','Keras']].agg([np.max,np.min,pd.Series.count])
# 分组后不同属性应用多种不同统计汇总
df.groupby(by = ['class','sex'])[['Python','Keras']].agg({'Python':[('最大值',np.max),('最小值',np.min)],
                                                          'Keras':[('计数',pd.Series.count),('中位数',np.median)]})
# 5、透视表
# 透视表也是一种分组聚合运算
def count(x):
    return len(x)
df.pivot_table(values=['Python','Keras','Tensorflow'],# 要透视分组的值
               index=['class','sex'], # 分组透视指标
               aggfunc={'Python':[('最大值',np.max)], # 聚合运算
                        'Keras':[('最小值',np.min),('中位数',np.median)],
                        'Tensorflow':[('最小值',np.min),('平均值',np.mean),('计数',count)]})

第十四部分 时间序列

第一节 时间戳操作

# 1、创建方法
pd.Timestamp('2020-8-24 12')# 时刻数据
pd.Period('2020-8-24',freq = 'M') # 时期数据
index = pd.date_range('2020.08.24',periods=5,freq = 'M') # 批量时刻数据
pd.period_range('2020.08.24',periods=5,freq='M') # 批量时期数据
ts = pd.Series(np.random.randint(0,10,size = 5),index = index) # 时间戳索引Series

# 2、转换方法
pd.to_datetime(['2020.08.24','2020-08-24','24/08/2020','2020/8/24'])
pd.to_datetime([1598582232],unit='s')
dt = pd.to_datetime([1598582420401],unit = 'ms') # 世界标准时间
dt + pd.DateOffset(hours = 8) # 东八区时间
dt + pd.DateOffset(days = 100) # 100天后日期

第二节 时间戳索引

index = pd.date_range("2020-8-24", periods=200, freq="D")
ts = pd.Series(range(len(index)), index=index)
# str类型索引
ts['2020-08-30'] # 日期访问数据
ts['2020-08-24':'2020-09-3'] # 日期切片
ts['2020-08'] # 传入年月
ts['2020'] # 传入年
# 时间戳索引
ts[pd.Timestamp('2020-08-30')]
ts[pd.Timestamp('2020-08-24'):pd.Timestamp('2020-08-30')] # 切片
ts[pd.date_range('2020-08-24',periods=10,freq='D')]

# 时间戳索引属性
ts.index.year # 获取年
ts.index.dayofweek # 获取星期几
ts.index.weekofyear # 一年中第几个星期几

第三节 时间序列常用方法

在做时间序列相关的工作时,经常要对时间做一些移动/滞后、频率转换、采样等相关操作,我们来看下这些操作如何使用.

index = pd.date_range('8/1/2020', periods=365, freq='D')
ts = pd.Series(np.random.randint(0, 500, len(index)), index=index)

# 1、移动
ts.shift(periods = 2) #  数据后移 
ts.shift(periods = -2) # 数据前移

# 日期移动
ts.shift(periods = 2,freq = pd.tseries.offsets.Day()) # 天移动
ts.tshift(periods = 1,freq = pd.tseries.offsets.MonthOffset()) #月移动

# 2、频率转换
ts.asfreq(pd.tseries.offsets.Week()) # 天变周
ts.asfreq(pd.tseries.offsets.MonthEnd()) # 天变月
ts.asfreq(pd.tseries.offsets.Hour(),fill_value = 0) 
#天变小时,又少变多,fill_value为填充值

# 3、重采样
# resample表示根据日期维度进行数据聚合,可以按照分钟、小时、周、月、年等来作为日期维度
ts.resample('2W').sum() # 以2周为单位进行汇总
ts.resample('3M').sum().cumsum() # 以季度为单位进行汇总

# 4、DataFrame重采样
d = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
          'volume': [50, 60, 40, 100, 50, 100, 40, 50],
          'week_starting':pd.date_range('24/08/2020',periods=8,freq='W')})
df1 = pd.DataFrame(d)
df1.resample('M',on = 'week_starting').apply(np.sum)
df1.resample('M',on = 'week_starting').agg({'price':np.mean,'volume':np.sum})

days = pd.date_range('1/8/2020', periods=4, freq='D')
data2 = dict({'price': [10, 11, 9, 13, 14, 18, 17, 19],
           'volume': [50, 60, 40, 100, 50, 100, 40, 50]})
df2 = pd.DataFrame(data2,
                   index=pd.MultiIndex.from_product([days,['morning',
                                                           'afternoon']]))
df2.resample('D', level=0).sum()

第四节 时区表示

index = pd.date_range('8/1/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(index)), index)
import pytz
pytz.common_timezones # 常用时区
# 时区表示
ts = ts.tz_localize(tz='UTC')
# 转换成其它时区
ts.tz_convert(tz = 'Asia/Shanghai')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/335438.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

windeployqt实现一键打包

每次发布QT程序前,都必须要在命令行环境下运行windeployqt 工具进行打包,加载相关的lib文件,才能正常运行。但是在命令行模式下,每次都要手动输入windeployqt的目录,和应用程序的位置目录,效率非常低,见下图: 那QT有没有什么好用的工具可以避免这个问题呢,认真找了一下…

前端如何实现将多页数据合并导出到Excel单Sheet页解决方案|内附代码

前端与数据展示 前后端分离是当前比较盛行的开发模式,它使项目的分工更加明确,后端负责处理、存储数据;前端负责显示数据.前端和后端开发人员通过接口进行数据的交换。因此前端最重要的能力是需要将数据呈现给用户后,与终端用户进行交互。 在前端拿到数…

【Linux】宝塔面板 SSL 证书安装部署

宝塔面板 SSL 证书安装部署前言证书下载宝塔配置SSL注意事项前言 前期有讲过Tomcat和Nginx分别部署SSL证书,但也有好多小伙伴们私信我说,帮忙出一期宝塔面板部署SSL证书的教程,毕竟宝塔的用户体量也是蛮大的,于是宠粉的博主&…

基于地基激光雷达数据和深度学习的Faster R-CNN的橡胶树个体分割

Paper题目:Individual Rubber T ree Segmentation Based on Ground-Based LiDAR Data and Faster R-CNN of Deep Learning Abstract 中国南方的橡胶树经常受到可能导致树体倾斜的自然干扰的影响。从扫描点云中对单个橡胶树进行准确的树冠分割是准确检索树参数的必…

前端 ES6 之 Promise 实践应用与控制反转

Promise 主要是为解决程序异步处理而生的,在现在的前端应用中无处不在,已然成为前端开发中最重要的技能点之一。它不仅解决了以前回调函数地狱嵌套的痛点,更重要的是它提供了更完整、更强大的异步解决方案。 同时 Promise 也是前端面试中必不…

玩转系统|初遇ChatGPT,我和TA的第一次约会

最近互联网圈子有一个非常火爆的话题ChatGPT,短短一周的时间就有上百万的用户,如果你不是程序员,也许会问这到底是个什么玩意?ChatGPT是什么?ChatGPT,美国“开放人工智能研究中心”研发的聊天机器人程序 [1…

CAPL(vTESTStudio) - DoIP - TCP接收_04

TCP接收 函数介绍 TcpOpen函数

LeetCode刷题系列 -- 59. 螺旋矩阵 II

给你一个正整数 n ,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的 n x n 正方形矩阵 matrix 。示例 1:输入:n 3输出:[[1,2,3],[8,9,4],[7,6,5]]示例 2:输入:n 1输出&#xff1…

以后更新功能,再也不用App发版了!智能小程序将为开发者最大化减负

在 IoT 时代,越来越多的企业意识到打造自有 App 对于品牌的重要性。作为智能设备不可或缺的控制终端,App 具备连接用户、完善服务、精细化运营用户的独特优势,可帮助企业大大提升品牌竞争力。 为了帮助品牌企业打造更具个性化、差异化的智能…

MoveIT Rviz和Gazebo联合仿真

文章目录环境安装概述ros_control框架ros_control数据流文件配置附加工具故障问题解决参考接前两篇:ROS MoveIT1(Noetic)安装总结 Solidworks导出为URDF用于MoveIT总结(带prismatic) MoveIT1 Assistant 总结 环境 Ubu…

网络安全协议(3)

作者简介:一名在校云计算网络运维学生、每天分享网络运维的学习经验、和学习笔记。 座右铭:低头赶路,敬事如仪 个人主页:网络豆的主页​​​​​​ 目录 前言 一.当前流行操作系统的安全等级 1.Windows的安全等级 什么是EAL…

不花钱体验最近火出圈的 ChatGPT 是真的

OpenAI 发布的 ChatGPT,一经发布在科技圈就火得不行了! ChatGPT 是什么呢? 它是一款由 OpenAl 开发的语言模型产品,它能够模拟人类的语言行为,与用户进行自然的交互。ChatGPT 基于GPT-3.5(Generative Pre…

linux基本功系列之lsof命令实战

文章目录前言一. lsof命令介绍二. 语法格式及常用选项三. 参考案例3.1 显示系统打开的文件3.2 查找某个文件相关的进程3.3 列出某个用户打开的文件信息3.4 列出某个程序进程所打开的文件信息3.5 查看某个进程号打开的文件3.6 列出所有的网络连接3.7 列出谁在使用某个端口3.8 恢…

OSS(Object Storage Service)进行上传图片,下载图片(详细看文档可以完成操作)

文章目录1.单体前后端项目上传1.上传流程2. BuckName 和EndPoint3. AccessKey 和Access Secret(创建RAM(Resource Access Manage)的子账号,然后可以获得Accesskey和Acess Secret)3.根据创建的子账号分配OSS的所有权限(可以对文件进行上传&…

【年度总结】回望大学四年坎坷的2022

【年度总结】回望大学四年&坎坷的2022 2022年,我毕业了! 满心欢喜的离开,到现在看来,却甚是想念大学的时光。 这一年,绝对是我此生过的最难的一年。考研失利、工作不顺、投资失败、“财政”赤字...... 现在的我…

浅析依赖注入框架的生命周期(以 InversifyJS 为例)

在上一篇介绍了 VSCode 的依赖注入设计,并且实现了一个简单的 IOC 框架。但是距离成为一个生产环境可用的框架还差的很远。 行业内已经有许多非常优秀的开源 IOC 框架,它们划分了更为清晰地模块来应对复杂情况下依赖注入运行的正确性。 这里我将以 Inv…

RiproV2主题首页中间网站动态栏美化教程

优化描述 Riprov2官网首页如下: 中间部分网站动态条过于简单,想优化成本文后续的样子,本教程解决这个问题。 优化后可设置滚动,可显示会员总数,今日发布,本周发布,资源总数等项。 优化后的具体网站:

大白话说ChatGPT

ChatGPT是如何流行的? 在经历了2016年,由AlphGo击败李世石而掀起的AI浪潮后,AI行业沉寂良久,上一波浪潮里起来的AI算法公司,在硬件化和数据的泥沼里寻找出路,这么多年,AI行业太需要一个现象级的…

JVM从跨平台到跨专业 Ⅲ -- 类加载与字节码技术【下】

文章目录编译期处理默认构造器自动拆装箱泛型集合取值可变参数foreach 循环switch 字符串switch 枚举枚举类try-with-resources方法重写时的桥接方法匿名内部类类加载阶段加载链接初始化相关练习和应用类加载器类与类加载器启动类加载器拓展类加载器双亲委派模式自定义类加载器…

前端JavaScript获取图片文件的真实格式

常见方式判断图片格式 当我们进行前端开发,需要处理图片上传功能,针对图片格式做判断时,常规的方法都是使用文件后缀名来判断,如下代码所示: input.addEventListener(change, (e) > {const file e.target.files[…