此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础
第五章:频率响应法
Example 5.41
若高阶系统的时域指标为: 18 % ≤ σ % ≤ 25 % , 0.1 ≤ t s ( Δ = 5 % ) ≤ 0.2 18\%≤\sigma\%≤25\%,0.1≤t_s(\Delta=5\%)≤0.2 18%≤σ%≤25%,0.1≤ts(Δ=5%)≤0.2,根据经验公式确定系统的截止频率和相角裕度的范围.
解:
已知高阶系统频域指标和时域指标的转换公式:
σ
%
=
0.16
+
0.4
(
M
r
−
1
)
,
t
s
=
K
0
π
ω
c
(
Δ
=
5
%
)
\sigma\%=0.16+0.4(M_r-1),t_s=\frac{K_0\pi}{\omega_c}(\Delta=5\%)
σ%=0.16+0.4(Mr−1),ts=ωcK0π(Δ=5%)
其中:
K
0
=
2
+
1.5
(
M
r
−
1
)
+
2.5
(
M
r
−
1
)
2
K_0=2+1.5(M_r-1)+2.5(M_r-1)^2
K0=2+1.5(Mr−1)+2.5(Mr−1)2
则
M
r
=
σ
−
0.16
0.4
+
1
M_r=\frac{\sigma-0.16}{0.4}+1
Mr=0.4σ−0.16+1
由
18
%
≤
σ
%
≤
25
%
18\%≤\sigma\%≤25\%
18%≤σ%≤25%,解得:
1.05
≤
M
r
≤
1.225
1.05≤M_r≤1.225
1.05≤Mr≤1.225
由
M
r
=
1
sin
γ
M_r=\displaystyle\frac{1}{\sin\gamma}
Mr=sinγ1,解得:
54.72
°
≤
γ
≤
72.25
°
54.72°≤\gamma≤72.25°
54.72°≤γ≤72.25°
由
0.1
≤
t
s
(
Δ
=
5
%
)
≤
0.2
0.1≤t_s(\Delta=5\%)≤0.2
0.1≤ts(Δ=5%)≤0.2,解得:
32.67
≤
ω
c
≤
65.34
32.67≤\omega_c≤65.34
32.67≤ωc≤65.34
Example 5.42
已知单位反馈延迟系统的开环传递函数: G ( s ) = K e − 0.1 s s ( 0.1 s + 1 ) ( s + 1 ) G(s)=\displaystyle\frac{K{\rm e}^{-0.1s}}{s(0.1s+1)(s+1)} G(s)=s(0.1s+1)(s+1)Ke−0.1s,根据伯德图确定:
- 系统的幅值裕度为 20 d B 20{\rm dB} 20dB时的 K K K值;
- 系统的相角裕度为 40 ° 40° 40°时的 K K K值;
解:
-
系统的幅值裕度为 20 d B 20{\rm dB} 20dB时的 K K K值;
系统的相频特性为:
φ ( ω ) = − 0.1 ω × 180 ° π − 90 ° − arctan 0.1 ω − arctan ω \varphi(\omega)=-0.1\omega\times\frac{180°}{\pi}-90°-\arctan0.1\omega-\arctan\omega φ(ω)=−0.1ω×π180°−90°−arctan0.1ω−arctanω
由 φ ( ω x ) = − 180 ° \varphi(\omega_x)=-180° φ(ωx)=−180°,即
− 0.1 ω x × 180 ° π − 90 ° − arctan 0.1 ω x − arctan ω x = − 180 ° -0.1\omega_x\times\frac{180°}{\pi}-90°-\arctan0.1\omega_x-\arctan\omega_x=-180° −0.1ωx×π180°−90°−arctan0.1ωx−arctanωx=−180°
解得穿越频率: ω x = 2.18 r a d / s \omega_x=2.18{\rm rad/s} ωx=2.18rad/s.由 h ( d B ) = 20 lg 1 ∣ G ( j ω x ) ∣ = 20 h({\rm dB})=20\lg\displaystyle\frac{1}{|G({\rm j}\omega_x)|}=20 h(dB)=20lg∣G(jωx)∣1=20,即
∣ G ( j ω x ) ∣ = K ω x 1 + 0.01 ω x 2 1 + ω x 2 ∣ ω x = 2.18 = 0.1 |G({\rm j}\omega_x)|=\left.\frac{K}{\omega_x\sqrt{1+0.01\omega_x^2}\sqrt{1+\omega_x^2}}\right|_{\omega_x=2.18}=0.1 ∣G(jωx)∣=ωx1+0.01ωx21+ωx2K∣ ∣ωx=2.18=0.1
解得: K = 0.535 K=0.535 K=0.535。取 K = 0.535 K=0.535 K=0.535,则系统的开环传递函数为:
G ( s ) = 0.535 e − 0.1 s s ( 0.1 s + 1 ) ( s + 1 ) G(s)=\frac{0.535{\rm e}^{-0.1s}}{s(0.1s+1)(s+1)} G(s)=s(0.1s+1)(s+1)0.535e−0.1s
【系统开环对数频率特性】
-
系统的相角裕度为 40 ° 40° 40°时的 K K K值;
由 γ = 180 ° + φ ( ω c ) = 40 ° \gamma=180°+\varphi(\omega_c)=40° γ=180°+φ(ωc)=40°,即
180 ° − 0.1 ω c × 180 ° π − 90 ° − arctan 0.1 ω c − arctan ω c = 40 ° 180°-0.1\omega_c\times\frac{180°}{\pi}-90°-\arctan0.1\omega_c-\arctan\omega_c=40° 180°−0.1ωc×π180°−90°−arctan0.1ωc−arctanωc=40°
解得: ω c = 0.85 \omega_c=0.85 ωc=0.85。由 ∣ G ( j ω c ) ∣ = 1 |G({\rm j}\omega_c)|=1 ∣G(jωc)∣=1,即
K ω c 1 + 0.01 ω c 2 1 + ω c 2 ∣ ω c = 0.85 = 1 ⇒ K = 1.12 \left.\frac{K}{\omega_c\sqrt{1+0.01\omega_c^2}\sqrt{1+\omega_c^2}}\right|_{\omega_c=0.85}=1\Rightarrow{K}=1.12 ωc1+0.01ωc21+ωc2K∣ ∣ωc=0.85=1⇒K=1.12
取 K = 1.12 K=1.12 K=1.12,则系统的传递函数为:
G ( s ) = 1.12 e − 0.1 s s ( 0.1 s + 1 ) ( s + 1 ) G(s)=\frac{1.12{\rm e}^{-0.1s}}{s(0.1s+1)(s+1)} G(s)=s(0.1s+1)(s+1)1.12e−0.1s
【系统开环对数频率特性】
Example 5.43
已知单位反馈系统的开环传递函数: G ( s ) = K ( s + 1 ) ( s + 1.5 ) ( s + 2 ) G(s)=\displaystyle\frac{K}{(s+1)(s+1.5)(s+2)} G(s)=(s+1)(s+1.5)(s+2)K,若希望系统闭环极点都具有小于 − 1 -1 −1的实部,用奈奎斯特判据确定 K K K的最大值.(提示:先作 G ( u ) = G ( s ) ∣ s = u − 1 G(u)=G(s)|_{s=u-1} G(u)=G(s)∣s=u−1变换)
解:
令
s
=
u
−
1
s=u-1
s=u−1,则
G
(
u
)
=
K
u
(
u
+
0.5
)
(
u
+
1
)
G(u)=\frac{K}{u(u+0.5)(u+1)}
G(u)=u(u+0.5)(u+1)K
令
u
=
j
ω
u={\rm j}\omega
u=jω,其开环频率特性为:
G
(
j
ω
)
=
K
j
ω
(
j
ω
+
0.5
)
(
j
ω
+
1
)
=
−
1.5
K
(
0.25
+
ω
2
)
(
1
+
ω
2
)
−
j
(
0.5
−
ω
2
)
K
ω
(
0.25
+
ω
2
)
(
1
+
ω
2
)
\begin{aligned} G({\rm j}\omega)&=\frac{K}{{\rm j}\omega({\rm j}\omega+0.5)({\rm j}\omega+1)}=-\frac{1.5K}{(0.25+\omega^2)(1+\omega^2)}-{\rm j}\frac{(0.5-\omega^2)K}{\omega(0.25+\omega^2)(1+\omega^2)} \end{aligned}
G(jω)=jω(jω+0.5)(jω+1)K=−(0.25+ω2)(1+ω2)1.5K−jω(0.25+ω2)(1+ω2)(0.5−ω2)K
幅相特性曲线的起点:
G
(
j
0
+
)
=
−
6
K
−
j
∞
G({\rm j}0_+)=-6K-{\rm j\infty}
G(j0+)=−6K−j∞;
幅相特性曲线的终点: G ( j ∞ ) = 0 G({\rm j}\infty)=0 G(j∞)=0;
幅相特性曲线与实轴的交点:令
I
m
[
G
(
j
ω
)
]
=
0
{\rm Im}[G({\rm j}\omega)]=0
Im[G(jω)]=0,解得:
ω
x
=
0.5
=
0.707
,
G
(
j
ω
x
)
=
R
e
[
G
(
j
ω
x
)
]
=
−
4
K
/
3
\omega_x=\sqrt{0.5}=0.707,G({\rm j}\omega_x)={\rm Re}[G({\rm j}\omega_x)]=-4K/3
ωx=0.5=0.707,G(jωx)=Re[G(jωx)]=−4K/3
概略幅相特性曲线:
因为
ν
=
1
\nu=1
ν=1,在幅相特性曲线上
ω
=
0
+
\omega=0_+
ω=0+的对应点起逆时针补作
90
°
90°
90°且半径为无穷大的虚圆弧.
G
(
s
)
G(s)
G(s)在
s
s
s右半平面的极点数
P
=
0
P=0
P=0;若使变换后的系统稳定,则
−
4
K
3
>
−
1
⇒
K
<
0.75
-\frac{4K}{3}>-1\Rightarrow{K<0.75}
−34K>−1⇒K<0.75
所以,若使系统闭环极点都具有小于
−
1
-1
−1的实部,原系统增益
K
K
K的最大值为
0.75
0.75
0.75。
Example 5.44
设单位反馈系统开环传递函数为: G ( s ) = ( s + 1 ) 2 s 2 ( 3 s + 1 ) ( 0.1 s + 1 ) 2 G(s)=\displaystyle\frac{(s+1)^2}{s^2(3s+1)(0.1s+1)^2} G(s)=s2(3s+1)(0.1s+1)2(s+1)2,用奈奎斯特判据判断闭环系统的稳定性.
解:
系统的频率特性为:
G
(
j
ω
)
=
(
j
ω
+
1
)
2
−
ω
2
(
j
3
ω
+
1
)
(
j
0.1
ω
+
1
)
2
=
−
1
+
4.79
ω
2
+
0.55
ω
4
ω
2
(
1
+
9
ω
2
)
(
1
+
0.01
ω
2
)
2
+
j
0.03
ω
4
−
2.01
ω
2
+
1.2
ω
(
1
+
9
ω
2
)
(
1
+
0.01
ω
2
)
2
\begin{aligned} G({\rm j}\omega)&=\frac{({\rm j}\omega+1)^2}{-\omega^2({\rm j}3\omega+1)({\rm j}0.1\omega+1)^2}\\\\ &=-\frac{1+4.79\omega^2+0.55\omega^4}{\omega^2(1+9\omega^2)(1+0.01\omega^2)^2}+{\rm j}\frac{0.03\omega^4-2.01\omega^2+1.2}{\omega(1+9\omega^2)(1+0.01\omega^2)^2} \end{aligned}
G(jω)=−ω2(j3ω+1)(j0.1ω+1)2(jω+1)2=−ω2(1+9ω2)(1+0.01ω2)21+4.79ω2+0.55ω4+jω(1+9ω2)(1+0.01ω2)20.03ω4−2.01ω2+1.2
开环幅相特性曲线起点:
G
(
j
0
+
)
=
−
∞
+
j
∞
G({\rm j}0_+)=-\infty+{\rm j}\infty
G(j0+)=−∞+j∞;终点为:
G
(
j
∞
)
=
0
G({\rm j}\infty)=0
G(j∞)=0;
开环幅相特性曲线与实轴的交点:令
I
m
[
G
(
j
ω
)
]
=
0
{\rm Im}[G({\rm j}\omega)]=0
Im[G(jω)]=0,解得:
{
ω
x
1
=
0.776
,
G
(
j
ω
x
1
)
=
R
e
[
G
(
j
ω
x
1
)
]
=
−
1.04
ω
x
2
=
8.149
,
G
(
j
ω
x
2
=
R
e
)
[
G
(
j
ω
x
2
)
]
=
−
0.025
\begin{cases} &\omega_{x_1}=0.776,&& G({\rm j}\omega_{x_1})={\rm Re}[G({\rm j}\omega_{x_1})]=-1.04\\\\ &\omega_{x_2}=8.149,&& G({\rm j}\omega_{x_2}={\rm Re})[G({\rm j}\omega_{x_2})]=-0.025 \end{cases}
⎩
⎨
⎧ωx1=0.776,ωx2=8.149,G(jωx1)=Re[G(jωx1)]=−1.04G(jωx2=Re)[G(jωx2)]=−0.025
其中
ω
x
1
、
ω
x
2
\omega_{x_1}、\omega_{x_2}
ωx1、ωx2为
G
(
j
ω
)
G({\rm j}\omega)
G(jω)与实轴交点处的频率.
开环幅相特性曲线在第Ⅱ、Ⅲ象限间变化.
【开环幅相特性曲线】
因为 ν = 2 \nu=2 ν=2,在幅相特性曲线上 ω = 0 + \omega=0_+ ω=0+的对应点起逆时针补作 180 ° 180° 180°且半径为无穷大的虚圆弧.
由于
G
(
s
)
G(s)
G(s)在
s
s
s右半平面的极点数
P
=
0
P=0
P=0,由奈奎斯特曲线可知:
N
−
=
1
,
N
+
=
1
N_-=1,N_+=1
N−=1,N+=1,故
N
=
N
+
−
N
−
=
0
N=N_+-N_-=0
N=N+−N−=0
应用奈奎斯特判据,算得
s
s
s右半平面的闭环极点数为:
Z
=
P
−
2
N
=
0
Z=P-2N=0
Z=P−2N=0
所以,系统闭环稳定.
Example 5.45
设单位反馈系统开环传递函数为: G ( s ) = 10 ( s + 1 ) s 2 ( s − 1 ) G(s)=\displaystyle\frac{10(s+1)}{s^2(s-1)} G(s)=s2(s−1)10(s+1),依据下述两种曲线判断闭环系统的稳定性:
- 概略开环幅相特性曲线;
- 对数频率特性曲线;
解:
系统开环频率特性为:
G
(
j
ω
)
=
10
(
j
ω
+
1
)
−
ω
2
(
j
ω
−
1
)
=
10
(
1
−
ω
2
)
ω
2
(
1
+
ω
2
)
+
j
20
ω
(
1
+
ω
2
)
G({\rm j}\omega)=\frac{10({\rm j}\omega+1)}{-\omega^2({\rm j}\omega-1)}=\frac{10(1-\omega^2)}{\omega^2(1+\omega^2)}+{\rm j}\frac{20}{\omega(1+\omega^2)}
G(jω)=−ω2(jω−1)10(jω+1)=ω2(1+ω2)10(1−ω2)+jω(1+ω2)20
开环幅相特性曲线的起点为:
G
(
j
0
+
)
=
∞
+
j
∞
G({\rm j}0_+)=\infty+{\rm j}\infty
G(j0+)=∞+j∞;终点为:
G
(
j
∞
)
=
0
G({\rm j}\infty)=0
G(j∞)=0;
幅相特性曲线与虚轴的交点:令
R
e
[
G
(
j
ω
)
]
=
0
{\rm Re}[G({\rm j}\omega)]=0
Re[G(jω)]=0,解得:
ω
y
=
1
,
G
(
j
ω
y
)
=
I
m
[
G
(
j
ω
y
)
]
=
10
\omega_y=1,G({\rm j}\omega_y)={\rm Im}[G({\rm j}\omega_y)]=10
ωy=1,G(jωy)=Im[G(jωy)]=10
其中:
ω
y
\omega_y
ωy为
G
(
j
ω
)
G({\rm j}\omega)
G(jω)与虚轴交点处的频率.
概略开环幅相特性曲线在第Ⅰ、Ⅱ象限变化.
【概略开环幅相特性曲线】
因为
ν
=
2
\nu=2
ν=2,在幅相特性曲线上
ω
=
0
+
\omega=0_+
ω=0+的对应点起逆时针补作
180
°
180°
180°且半径为无穷大的虚圆弧.
由于
G
(
s
)
G(s)
G(s)在
s
s
s右半平面的极点数
P
=
1
P=1
P=1,由奈奎斯特曲线可知:
N
−
=
1
2
,
N
+
=
0
N_-=\displaystyle\frac{1}{2},N_+=0
N−=21,N+=0,故
N
=
N
+
−
N
−
=
−
1
2
N=N_+-N_-=-\frac{1}{2}
N=N+−N−=−21
应用奈奎斯特判据,算得
s
s
s右半平面的闭环极点数为:
Z
=
P
−
2
N
=
2
Z=P-2N=2
Z=P−2N=2
所以,系统闭环不稳定,有两个正实部的闭环极点.
系统的开环对数频率特性为:
{
L
(
ω
)
=
20
lg
10
−
40
lg
ω
φ
(
ω
)
=
−
360
°
+
2
arctan
ω
\begin{cases} &L(\omega)=20\lg10-40\lg\omega\\\\ &\varphi(\omega)=-360°+2\arctan\omega \end{cases}
⎩
⎨
⎧L(ω)=20lg10−40lgωφ(ω)=−360°+2arctanω
【开环对数幅频和相频特性曲线】
因为
ν
=
2
\nu=2
ν=2,故需要在对数相频特性的低频段曲线向上补作
2
×
90
°
2\times90°
2×90°的垂线.
在
L
(
ω
)
>
0
L(\omega)>0
L(ω)>0的频段内,其对数相频曲线半次穿越
(
2
k
+
1
)
×
180
°
(
k
=
−
1
)
(2k+1)\times180°(k=-1)
(2k+1)×180°(k=−1)线,且为半穿越,故
N
−
=
1
2
,
N
+
=
0
N_-=\displaystyle\frac{1}{2},N_+=0
N−=21,N+=0,则
N
=
N
+
−
N
−
=
−
1
2
N=N_+-N_-=-\frac{1}{2}
N=N+−N−=−21
由于
G
(
s
)
G(s)
G(s)在
s
s
s右半平面的极点数
P
=
1
P=1
P=1,于是闭环极点位于
s
s
s右半平面的个数为:
Z
=
P
−
2
N
=
1
−
2
×
(
−
1
2
)
=
2
Z=P-2N=1-2\times(-\frac{1}{2})=2
Z=P−2N=1−2×(−21)=2
所以,系统闭环不稳定,有两个正实部闭环极点.
Example 5.46
设反馈系统如下图所示,其中
G
1
(
s
)
,
G
2
(
s
)
G_1(s),G_2(s)
G1(s),G2(s)都是最小相位传递函数.若已知开环系统和
G
1
(
s
)
G_1(s)
G1(s)的对数幅频渐近特性曲线如下图所示,确定
G
2
(
s
)
G_2(s)
G2(s)的传递函数.
解:
由开环系统的对数幅频渐近特性曲线可知,开环传递函数的形式:
G
(
s
)
=
G
1
(
s
)
G
2
(
s
)
=
K
s
(
1
26.6
s
+
1
)
(
1
ω
3
s
+
1
)
G(s)=G_1(s)G_2(s)=\frac{K}{s\left(\displaystyle\frac{1}{26.6}s+1\right)\left(\displaystyle\frac{1}{\omega_3}s+1\right)}
G(s)=G1(s)G2(s)=s(26.61s+1)(ω31s+1)K
由开环系统对数幅频渐近特性曲线的几何特性,有如下等式:
20
lg
26.6
ω
c
=
6
,
20
lg
K
ω
c
=
0
,
40
lg
ω
3
26.6
=
23
−
6
20\lg\frac{26.6}{\omega_c}=6,20\lg\frac{K}{\omega_c}=0,40\lg\frac{\omega_3}{26.6}=23-6
20lgωc26.6=6,20lgωcK=0,40lg26.6ω3=23−6
解得:
ω
c
=
13.3
,
K
=
13.3
,
ω
3
=
70.78
\omega_c=13.3,K=13.3,\omega_3=70.78
ωc=13.3,K=13.3,ω3=70.78
故开环系统的传递函数为:
G
(
s
)
=
G
1
(
s
)
G
2
(
s
)
=
13.3
s
(
1
26.6
s
+
1
)
(
1
70.78
s
+
1
)
G(s)=G_1(s)G_2(s)=\frac{13.3}{s\left(\displaystyle\frac{1}{26.6}s+1\right)\left(\displaystyle\frac{1}{70.78}s+1\right)}
G(s)=G1(s)G2(s)=s(26.61s+1)(70.781s+1)13.3
由
G
1
(
s
)
G_1(s)
G1(s)的对数幅频渐近特性曲线可知,
G
1
(
s
)
G_1(s)
G1(s)有如下形式:
G
1
(
s
)
=
K
1
s
(
1
ω
1
s
+
1
)
(
1
ω
2
s
+
1
)
G_1(s)=\frac{K_1}{s\left(\displaystyle\frac{1}{\omega_1}s+1\right)\left(\displaystyle\frac{1}{\omega_2}s+1\right)}
G1(s)=s(ω11s+1)(ω21s+1)K1
由开环系统对数幅频渐近特性曲线的几何特性,有如下等式:
40
lg
10
ω
1
=
20
,
20
lg
K
1
ω
1
=
20
,
40
lg
ω
2
10
=
l
,
60
lg
26.6
ω
2
=
20
−
l
40\lg\frac{10}{\omega_1}=20,20\lg\frac{K_1}{\omega_1}=20,40\lg\frac{\omega_2}{10}=l,60\lg\frac{26.6}{\omega_2}=20-l
40lgω110=20,20lgω1K1=20,40lg10ω2=l,60lgω226.6=20−l
解得:
ω
1
=
3.16
,
K
1
=
31.62
,
l
=
11
,
ω
2
=
18.82
\omega_1=3.16,K_1=31.62,l=11,\omega_2=18.82
ω1=3.16,K1=31.62,l=11,ω2=18.82
故
G
1
(
s
)
G_1(s)
G1(s)的传递函数为:
G
1
(
s
)
=
31.62
s
(
1
3.16
s
+
1
)
(
1
18.82
s
+
1
)
G_1(s)=\frac{31.62}{s\left(\displaystyle\frac{1}{3.16}s+1\right)\left(\displaystyle\frac{1}{18.82}s+1\right)}
G1(s)=s(3.161s+1)(18.821s+1)31.62
则
G
2
(
s
)
G_2(s)
G2(s)的传递函数为:
G
2
(
s
)
=
G
(
s
)
G
1
(
s
)
=
0.42
(
1
3.16
s
+
1
)
(
1
18.82
s
+
1
)
(
1
26.6
s
+
1
)
(
1
70.78
s
+
1
)
G_2(s)=\frac{G(s)}{G_1(s)}=\frac{0.42\left(\displaystyle\frac{1}{3.16}s+1\right)\left(\displaystyle\frac{1}{18.82}s+1\right)}{\left(\displaystyle\frac{1}{26.6}s+1\right)\left(\displaystyle\frac{1}{70.78}s+1\right)}
G2(s)=G1(s)G(s)=(26.61s+1)(70.781s+1)0.42(3.161s+1)(18.821s+1)
【开环对数渐近特性曲线】
Example 5.47
已知某最小相位系统开环对数幅频渐近特性曲线如下图所示,确定系统开环传递函数.
解:
由图可知,系统开环传递函数应具有如下形式:
G
(
s
)
=
K
(
1
ω
1
s
+
1
)
(
1
ω
3
s
+
1
)
s
[
(
1
ω
2
s
)
2
+
2
ζ
ω
2
s
+
1
]
(
1
ω
4
s
+
1
)
G(s)=\frac{K\left(\displaystyle\frac{1}{\omega_1}s+1\right)\left(\displaystyle\frac{1}{\omega_3}s+1\right)}{s\left[\left(\displaystyle\frac{1}{\omega_2}s\right)^2+\displaystyle\frac{2\zeta}{\omega_2}s+1\right]\left(\displaystyle\frac{1}{\omega_4}s+1\right)}
G(s)=s[(ω21s)2+ω22ζs+1](ω41s+1)K(ω11s+1)(ω31s+1)
由系统开环对数幅频渐近特性曲线的几何特性,可得:
20
lg
K
0.1
=
42.7
,
40
lg
9.49
ω
3
=
20
lg
30
ω
3
,
40
lg
ω
4
50
=
20
lg
ω
4
30
,
0.78
=
ω
2
1
−
2
ζ
2
42.7
−
40
lg
9.49
ω
2
=
20
lg
1
2
ζ
1
−
ζ
2
,
40
lg
9.49
ω
2
=
20
lg
K
ω
1
\begin{aligned} &20\lg\frac{K}{0.1}=42.7,40\lg\frac{9.49}{\omega_3}=20\lg\frac{30}{\omega_3},40\lg\frac{\omega_4}{50}=20\lg\frac{\omega_4}{30},0.78=\omega_2\sqrt{1-2\zeta^2}\\\\ &42.7-40\lg\frac{9.49}{\omega^2}=20\lg\frac{1}{2\zeta\sqrt{1-\zeta^2}},40\lg\frac{9.49}{\omega_2}=20\lg\frac{K}{\omega_1} \end{aligned}
20lg0.1K=42.7,40lgω39.49=20lgω330,40lg50ω4=20lg30ω4,0.78=ω21−2ζ242.7−40lgω29.49=20lg2ζ1−ζ21,40lgω29.49=20lgω1K
解得:
K
=
13.65
,
ω
1
=
0.14
,
ω
2
=
0.95
,
ζ
=
0.4
,
ω
3
=
3
,
ω
4
=
83.33
K=13.65,\omega_1=0.14,\omega_2=0.95,\zeta=0.4,\omega_3=3,\omega_4=83.33
K=13.65,ω1=0.14,ω2=0.95,ζ=0.4,ω3=3,ω4=83.33
故开环系统的传递函数为:
G
(
s
)
=
13.65
(
1
0.14
s
+
1
)
(
1
3
s
+
1
)
s
[
(
1
0.95
s
)
2
+
2
×
0.4
0.95
s
+
1
]
(
1
83.33
s
+
1
)
G(s)=\frac{13.65\left(\displaystyle\frac{1}{0.14}s+1\right)\left(\displaystyle\frac{1}{3}s+1\right)}{s\left[\left(\displaystyle\frac{1}{0.95}s\right)^2+\displaystyle\frac{2\times0.4}{0.95}s+1\right]\left(\displaystyle\frac{1}{83.33}s+1\right)}
G(s)=s[(0.951s)2+0.952×0.4s+1](83.331s+1)13.65(0.141s+1)(31s+1)
【验证】
Example 5.48
已知系统开环传递函数为: G ( s ) H ( s ) = K ( T 1 s + 1 ) s 2 ( T 2 s + 1 ) , T 1 > T 2 > 0 G(s)H(s)=\displaystyle\frac{K(T_1s+1)}{s^2(T_2s+1)},T_1>T_2>0 G(s)H(s)=s2(T2s+1)K(T1s+1),T1>T2>0,求 K K K变化下系统相角裕度的最大值.
解:
系统的开环频率特性为:
G
(
j
ω
)
H
(
j
ω
)
=
K
(
1
+
j
T
1
ω
)
−
ω
2
(
1
+
j
T
2
ω
)
=
K
1
+
T
1
2
ω
2
ω
2
1
+
T
2
2
ω
2
∠
(
arctan
T
1
ω
−
180
°
−
arctan
T
2
ω
)
G({\rm j}\omega)H({\rm j}\omega)=\frac{K(1+{\rm j}T_1\omega)}{-\omega^2(1+{\rm j}T_2\omega)}=\displaystyle\frac{K\sqrt{1+T_1^2\omega^2}}{\omega^2\sqrt{1+T_2^2\omega^2}}\angle(\arctan{T_1}\omega-180°-\arctan{T_2\omega})
G(jω)H(jω)=−ω2(1+jT2ω)K(1+jT1ω)=ω21+T22ω2K1+T12ω2∠(arctanT1ω−180°−arctanT2ω)
由系统相角裕度的定义可知:
γ
=
180
°
+
∠
(
G
(
j
ω
c
)
H
(
j
ω
c
)
)
=
arctan
T
1
ω
c
−
arctan
T
2
ω
c
\gamma=180°+\angle(G({\rm j}\omega_c)H({\rm j}\omega_c))=\arctan{T_1}\omega_c-\arctan{T_2}\omega_c
γ=180°+∠(G(jωc)H(jωc))=arctanT1ωc−arctanT2ωc
且有:
∣
G
(
j
ω
c
)
H
(
j
ω
c
)
∣
=
∣
K
1
+
T
1
2
ω
c
2
ω
c
2
1
+
T
2
2
ω
c
2
∣
=
1
|G({\rm j}\omega_c)H({\rm j}\omega_c)|=\left|\frac{K\sqrt{1+T_1^2\omega_c^2}}{\omega_c^2\sqrt{1+T_2^2\omega_c^2}}\right|=1
∣G(jωc)H(jωc)∣=∣
∣ωc21+T22ωc2K1+T12ωc2∣
∣=1
令
d
γ
d
ω
c
=
0
\displaystyle\frac{{\rm d}\gamma}{{\rm d}\omega_c}=0
dωcdγ=0,得
T
1
1
+
T
1
2
ω
c
2
−
T
2
1
+
T
2
2
ω
c
2
=
0
⇒
ω
c
=
1
T
1
T
2
\frac{T_1}{1+T_1^2\omega_c^2}-\frac{T_2}{1+T_2^2\omega_c^2}=0\Rightarrow\omega_c=\frac{1}{\sqrt{T_1T_2}}
1+T12ωc2T1−1+T22ωc2T2=0⇒ωc=T1T21
因
d
2
γ
d
ω
c
2
=
−
T
1
3
ω
c
(
1
+
T
1
2
ω
c
2
)
2
+
T
2
3
ω
c
(
1
+
T
2
2
ω
c
2
)
2
=
ω
c
[
(
T
2
3
−
T
1
3
)
+
2
(
T
1
2
T
2
3
−
T
1
3
T
2
2
)
ω
c
2
+
(
T
1
4
T
2
3
−
T
1
3
T
2
4
)
ω
c
4
]
(
1
+
T
1
2
ω
c
2
)
2
(
1
+
T
2
2
ω
c
2
)
2
=
(
T
2
−
T
1
)
(
T
1
T
2
)
3
/
2
(
T
1
+
T
2
)
2
\begin{aligned} \frac{{\rm d}^2\gamma}{{\rm d}\omega_c^2}&=-\frac{T_1^3\omega_c}{(1+T_1^2\omega_c^2)^2}+\frac{T_2^3\omega_c}{(1+T_2^2\omega_c^2)^2}\\\\ &=\frac{\omega_c[(T_2^3-T_1^3)+2(T_1^2T_2^3-T_1^3T_2^2)\omega_c^2+(T_1^4T_2^3-T_1^3T_2^4)\omega_c^4]}{(1+T_1^2\omega_c^2)^2(1+T_2^2\omega_c^2)^2}\\\\ &=\frac{(T_2-T_1)(T_1T_2)^{3/2}}{(T_1+T_2)^2} \end{aligned}
dωc2d2γ=−(1+T12ωc2)2T13ωc+(1+T22ωc2)2T23ωc=(1+T12ωc2)2(1+T22ωc2)2ωc[(T23−T13)+2(T12T23−T13T22)ωc2+(T14T23−T13T24)ωc4]=(T1+T2)2(T2−T1)(T1T2)3/2
由于
T
1
>
T
2
T_1>T_2
T1>T2,故
d
2
γ
d
ω
c
2
<
0
\frac{{\rm d}^2\gamma}{{\rm d}\omega_c^2}<0
dωc2d2γ<0
即当
ω
c
=
1
T
1
T
2
\omega_c=\displaystyle\frac{1}{\sqrt{T_1T_2}}
ωc=T1T21时,
γ
\gamma
γ取最大值.
由
∣
G
(
j
ω
c
)
H
(
j
ω
c
)
∣
=
∣
K
1
+
T
1
2
ω
c
2
ω
c
2
1
+
T
2
2
ω
c
2
∣
ω
c
=
1
T
1
T
2
=
1
⇒
K
=
1
T
1
T
1
T
2
|G({\rm j}\omega_c)H({\rm j}\omega_c)|=\left|\frac{K\sqrt{1+T_1^2\omega_c^2}}{\omega_c^2\sqrt{1+T_2^2\omega_c^2}}\right|_{\omega_c=\frac{1}{\sqrt{T_1T_2}}}=1\Rightarrow{K=\frac{1}{T_1\sqrt{T_1T_2}}}
∣G(jωc)H(jωc)∣=∣
∣ωc21+T22ωc2K1+T12ωc2∣
∣ωc=T1T21=1⇒K=T1T1T21
故最大相角裕度为:
γ
max
=
arctan
T
1
T
2
−
arctan
T
2
T
1
=
arctan
T
1
−
T
2
2
T
1
T
2
(
T
1
>
T
2
>
0
)
\gamma_{\max}=\arctan\sqrt{\frac{T_1}{T_2}}-\arctan\sqrt{\frac{T_2}{T_1}}=\arctan\frac{T_1-T_2}{2\sqrt{T_1T_2}}(T_1>T_2>0)
γmax=arctanT2T1−arctanT1T2=arctan2T1T2T1−T2(T1>T2>0)
Example 5.49
设系统结构图如下图所示,其中 G ( s ) G(s) G(s)有两个正实部的极点,三个为零的极点.当 G ( s ) G(s) G(s)的增益 K = 10 K=10 K=10时,其幅相特性如下图所示,求系统闭环稳定 K K K值范围.
解:
设系统的开环传递函数为:
G
(
s
)
=
K
G
0
(
s
)
s
3
G(s)=\frac{KG_0(s)}{s^3}
G(s)=s3KG0(s)
其中:
K
K
K为开环增益,
lim
s
→
0
G
0
(
s
)
=
1
\displaystyle\lim_{s\to0}G_0(s)=1
s→0limG0(s)=1,
G
0
(
s
)
G_0(s)
G0(s)有两个正实部极点,即
P
=
2
P=2
P=2.
取幅相特性曲线与负实轴的交点对应的穿越频率分别为: ω 1 , ω 2 , ω 3 , ω 4 \omega_1,\omega_2,\omega_3,\omega_4 ω1,ω2,ω3,ω4,且 ω 4 > ω 3 > ω 2 > ω 1 \omega_4>\omega_3>\omega_2>\omega_1 ω4>ω3>ω2>ω1.
因此,由上图可知:
G
(
j
ω
1
)
=
−
10
ω
1
3
G
0
(
j
ω
1
)
=
−
2
,
G
(
j
ω
2
)
=
−
10
ω
2
3
G
0
(
j
ω
2
)
=
−
0.5
G
(
j
ω
3
)
=
−
10
ω
3
3
G
0
(
j
ω
3
)
=
−
1.5
,
G
(
j
ω
4
)
=
−
10
ω
4
3
G
0
(
j
ω
4
)
=
−
0.3
\begin{aligned} &G({\rm j}\omega_1)=\frac{-10}{\omega_1^3}G_0({\rm j}\omega_1)=-2,G({\rm j}\omega_2)=\frac{-10}{\omega_2^3}G_0({\rm j}\omega_2)=-0.5\\\\ &G({\rm j}\omega_3)=\frac{-10}{\omega_3^3}G_0({\rm j}\omega_3)=-1.5,G({\rm j}\omega_4)=\frac{-10}{\omega_4^3}G_0({\rm j}\omega_4)=-0.3 \end{aligned}
G(jω1)=ω13−10G0(jω1)=−2,G(jω2)=ω23−10G0(jω2)=−0.5G(jω3)=ω33−10G0(jω3)=−1.5,G(jω4)=ω43−10G0(jω4)=−0.3
当
K
K
K变化时,系统穿越频率
ω
1
,
ω
2
,
ω
3
,
ω
4
\omega_1,\omega_2,\omega_3,\omega_4
ω1,ω2,ω3,ω4不变,仅是幅相特性曲线与负实轴的交点沿负实轴移动.
假设当
K
K
K分别为
K
1
,
K
2
,
K
3
,
K
4
K_1,K_2,K_3,K_4
K1,K2,K3,K4时,幅相特性曲线与负实轴的交点
(
G
(
j
ω
1
)
,
j
0
)
,
(
G
(
j
ω
2
)
,
j
0
)
,
(
G
(
j
ω
3
)
,
j
0
)
(G({\rm j}\omega_1),{\rm j}0),(G({\rm j}\omega_2),{\rm j}0),(G({\rm j}\omega_3),{\rm j}0)
(G(jω1),j0),(G(jω2),j0),(G(jω3),j0)和
(
G
(
j
ω
4
)
,
j
0
)
(G({\rm j}\omega_4),{\rm j}0)
(G(jω4),j0)分别位于
(
−
1
,
j
0
)
(-1,{\rm j}0)
(−1,j0)点,即分别有:
G
(
j
ω
1
)
=
−
K
1
ω
1
3
G
0
(
j
ω
1
)
=
−
1
,
G
(
j
ω
2
)
=
−
K
2
ω
2
3
G
0
(
j
ω
2
)
=
−
1
G
(
j
ω
3
)
=
−
K
3
ω
3
3
G
0
(
j
ω
3
)
=
−
1
,
G
(
j
ω
4
)
=
−
K
4
ω
4
3
G
0
(
j
ω
4
)
=
−
1
\begin{aligned} &G({\rm j}\omega_1)=\frac{-K_1}{\omega_1^3}G_0({\rm j}\omega_1)=-1,G({\rm j}\omega_2)=\frac{-K_2}{\omega_2^3}G_0({\rm j}\omega_2)=-1\\\\ &G({\rm j}\omega_3)=\frac{-K_3}{\omega_3^3}G_0({\rm j}\omega_3)=-1,G({\rm j}\omega_4)=\frac{-K_4}{\omega_4^3}G_0({\rm j}\omega_4)=-1 \end{aligned}
G(jω1)=ω13−K1G0(jω1)=−1,G(jω2)=ω23−K2G0(jω2)=−1G(jω3)=ω33−K3G0(jω3)=−1,G(jω4)=ω43−K4G0(jω4)=−1
解得:
K
1
=
5
,
K
2
=
20
3
,
K
3
=
20
,
K
4
=
100
3
K_1=5,K_2=\frac{20}{3},K_3=20,K_4=\frac{100}{3}
K1=5,K2=320,K3=20,K4=3100
当
K
K
K变化时,开环幅相特性曲线的五种形式如下图所示:
由于
ν
=
3
\nu=3
ν=3,故从
ω
=
0
+
\omega=0_+
ω=0+的对应点起,逆时针补作半径为无穷大的
3
×
π
2
=
3
2
π
3\times\displaystyle\frac{\pi}{2}=\displaystyle\frac{3}{2}\pi
3×2π=23π圆弧.
由此分别确定各幅相特性曲线包围 ( − 1 , j 0 ) (-1,{\rm j}0) (−1,j0)点的圈数,并应用奈奎斯特判据判断系统的闭环稳定性:
- 当 0 < K < 5 0<K<5 0<K<5时, N = − 1 , Z = P − 2 N = 4 N=-1,Z=P-2N=4 N=−1,Z=P−2N=4,系统闭环不稳定;
- 当 5 < K < 20 3 5<K<\displaystyle\frac{20}{3} 5<K<320时, N = 0 , Z = P − 2 N = 2 N=0,Z=P-2N=2 N=0,Z=P−2N=2,系统闭环不稳定;
- 当 20 3 < K < 20 \displaystyle\frac{20}{3}<K<20 320<K<20时, N = 1 , Z = P − 2 N = 0 N=1,Z=P-2N=0 N=1,Z=P−2N=0,系统闭环稳定;
- 当 20 < K < 100 3 20<K<\displaystyle\frac{100}{3} 20<K<3100时, N = 0 , Z = P − 2 N = 2 N=0,Z=P-2N=2 N=0,Z=P−2N=2,系统闭环不稳定;
- 当 K > 100 3 K>\displaystyle\frac{100}{3} K>3100时, N = − 1 , Z = P − 2 N = 4 N=-1,Z=P-2N=4 N=−1,Z=P−2N=4,系统闭环不稳定.
综上,使系统闭环稳定的
K
K
K值变化范围为:
20
3
<
K
<
20
\frac{20}{3}<K<20
320<K<20
Example 5.50
设系统结构图如下图 a {\rm a} a所示,系统闭环对数幅频渐近特性如下图 b {\rm b} b所示, U ( s ) R ( s ) \displaystyle\frac{U(s)}{R(s)} R(s)U(s)的对数幅频渐近特性如下图 c {\rm c} c所示.
已知
C
(
s
)
R
(
s
)
\displaystyle\frac{C(s)}{R(s)}
R(s)C(s)和
U
(
s
)
R
(
s
)
\displaystyle\frac{U(s)}{R(s)}
R(s)U(s)都是最小相位传递函数,确定系统中的传递函数
G
1
(
s
)
、
G
2
(
s
)
G_1(s)、G_2(s)
G1(s)、G2(s).
解:
由图
b
{\rm b}
b可得,系统闭环传递函数为:
Φ
(
s
)
=
0.1
s
(
s
20
+
1
)
(
s
50
+
1
)
(
s
10
+
1
)
(
s
15
+
1
)
(
s
100
+
1
)
\Phi(s)=\frac{0.1s\left(\displaystyle\frac{s}{20}+1\right)\left(\displaystyle\frac{s}{50}+1\right)}{\left(\displaystyle\frac{s}{10}+1\right)\left(\displaystyle\frac{s}{15}+1\right)\left(\displaystyle\frac{s}{100}+1\right)}
Φ(s)=(10s+1)(15s+1)(100s+1)0.1s(20s+1)(50s+1)
由图
c
{\rm c}
c可得,系统传递函数为:
G
u
r
(
s
)
=
(
s
50
+
1
)
(
s
10
+
1
)
(
s
15
+
1
)
(
s
100
+
1
)
G_{ur}(s)=\frac{\left(\displaystyle\frac{s}{50}+1\right)}{\left(\displaystyle\frac{s}{10}+1\right)\left(\displaystyle\frac{s}{15}+1\right)\left(\displaystyle\frac{s}{100}+1\right)}
Gur(s)=(10s+1)(15s+1)(100s+1)(50s+1)
由图
a
{\rm a}
a的结构图可得:
Φ
(
s
)
=
G
1
(
s
)
G
2
(
s
)
1
+
G
1
(
s
)
G
2
(
s
)
,
G
u
r
(
s
)
=
G
1
(
s
)
1
+
G
1
(
s
)
G
2
(
s
)
\Phi(s)=\frac{G_1(s)G_2(s)}{1+G_1(s)G_2(s)},G_{ur}(s)=\frac{G_1(s)}{1+G_1(s)G_2(s)}
Φ(s)=1+G1(s)G2(s)G1(s)G2(s),Gur(s)=1+G1(s)G2(s)G1(s)
则传递函数为:
G
2
(
s
)
=
Φ
(
s
)
G
u
r
(
s
)
=
0.1
s
(
s
20
+
1
)
G_2(s)=\frac{\Phi(s)}{G_{ur}(s)}=0.1s\left(\displaystyle\frac{s}{20}+1\right)
G2(s)=Gur(s)Φ(s)=0.1s(20s+1)
由系统的闭环传递函数
Φ
(
s
)
\Phi(s)
Φ(s)可得:
G
1
(
s
)
G
2
(
s
)
=
Φ
(
s
)
1
−
Φ
(
s
)
=
0.1
s
(
s
20
+
1
)
(
s
50
+
1
)
−
s
3
30000
+
s
2
750
+
23
s
300
+
1
G_1(s)G_2(s)=\frac{\Phi(s)}{1-\Phi(s)}=\frac{0.1s\left(\displaystyle\frac{s}{20}+1\right)\left(\displaystyle\frac{s}{50}+1\right)}{-\displaystyle\frac{s^3}{30000}+\displaystyle\frac{s^2}{750}+\displaystyle\frac{23s}{300}+1}
G1(s)G2(s)=1−Φ(s)Φ(s)=−30000s3+750s2+30023s+10.1s(20s+1)(50s+1)
故传递函数为:
G
1
(
s
)
=
(
s
50
+
1
)
−
s
3
30000
+
s
2
750
+
23
s
300
+
1
G_1(s)=\frac{\left(\displaystyle\frac{s}{50}+1\right)}{-\displaystyle\frac{s^3}{30000}+\displaystyle\frac{s^2}{750}+\displaystyle\frac{23s}{300}+1}
G1(s)=−30000s3+750s2+30023s+1(50s+1)
【验证】