《计算机视觉度量:从特征描述到深度学习》—深度学习工业检测方案评估

news2025/4/16 13:00:29

谢谢各位粉丝的支持,过去了一年多才再次更新技术博客。原因是个人家庭和技术发展在这短短一年多,发生了很大变化。本人身为技术博主,也在不断的探索和研究新技术在工业检测领域的技术方案。

并在这期间已经完成了基础的工业检测大模型的设计和开发,完成了非监督和零训练的技术突破和实现。但是也遇到了新的技术问题,比如数据质量和模型幻视等核心技术问题。

本次博客,更新一下最新的技术研究和问题梳理,欢迎粉丝交流。

2019年本人开始用深度学习在工业检测方向,目前已经过去了6年时间,从最早的分类算法,到目标检测算法,分割算法等技术方向,到2020年最早一批进入工业非监督算法的设计和研究。本人也对深度学习有了深刻的认识和体会。

工业视觉的深度学习方案,目前都是基于基础视觉模型实现的,基础模型有最早的VGG,Resnet等经典基础模型,同样后面取得成功的模型也都是基于这些经典模型设计的。中间一段时间ResNet为代表的CNN网络的开发占据了学术界和工业界的主流。2021年开始VIT的出现,开始了继于Transformer网络设计的基础模型开始流行。不管模型怎么演化,核心解决的问题是针对不同场景下,深度学习对图片进行特征提取和搜索的方法。或者定义一种图片特征保存方法,在后期研究非监督学习方法的时候,这种理论更加明确。

把深度学习看作图片特征提取的一种方法,已经成为了行业内的共识,得益于模型对大数据进行了特征提取的总结,才有了模型对任何图片的特征范式总结方法。也就出现深度学习的特征提取要远大于人工提取的图片特征的效果。

深度学习,解决了图片特征提取的难题,但是出现新的问题。深度学习对数据质量有严格的要求,这种要求甚至于说苛刻。但是在苛刻的数据质量要求面前,应用场景就很受限。这也是很多社区朋友出现,一测试都可以,一上现场都跑不起来,各种过检和漏检的情况。这也是目前深度学习应用的主要问题。同时解决数据质量问题,又不能量化,只能靠人工去确认,误差就会很大。(后期会出数据质量模型量化的方法)

这也导致目前的深度学习检测算法的应用很局限的原因。这一年多更多工具和方法的出现,也解决了一些问题。非监督解决了,数据不足的问题。大模型和Agent工具的出现,解决模型重复训练的问题,甚至可以免训练。如果大家对工业检测大模型不了解,可以在DY上搜索“军哥讲视觉”了解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2335147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LR(0)

LR0就是当我处在自动机为红色这些结束状态的时候,这些红色状态就代表我们识别到了一个句柄,那现在的问题就是识别到了句柄,那要不要对他进行归约?LR0就是我不管当前指针指向的终结符是什么,我都拿它做规约 这里的二号状…

无人船 | 图解基于视线引导(LOS)的无人艇制导算法

目录 1 视线引导法介绍2 LOS制导原理推导3 Lyapunov稳定性分析4 LOS制导效果 1 视线引导法介绍 视线引导法(Line of Sight, LOS)作为无人水面艇(USV)自主导航领域的核心技术,通过几何制导与动态控制深度融合的机制&am…

3.2.2.3 Spring Boot配置拦截器

在Spring Boot应用中配置拦截器(Interceptor)可以对请求进行预处理和后处理,实现如权限检查、日志记录等功能。通过实现HandlerInterceptor接口并注册到Spring容器,拦截器可以自动应用到匹配的请求路径。案例中,创建了…

大模型文生图

提示词分4个部分:质量,主体,元素,风格 质量:杰作,高质量,超细节,完美的精度,高分辨率,大师级的; 权重:把图片加括号,&am…

LeetCode 118题解 | 杨辉三角

题目链接: https://leetcode.cn/problems/pascals-triangle/description/ 题目如下: 解题过程如下: 杨辉三角就是一个不规则的二维数组,实际上是一个直角三角形。如图所示: 杨辉三角特点:每一行的第一个和最后一个都是…

『Kubernetes(K8S) 入门进阶实战』实战入门 - Pod 详解

『Kubernetes(K8S) 入门进阶实战』实战入门 - Pod 详解 Pod 结构 每个 Pod 中都可以包含一个或者多个容器,这些容器可以分为两类 用户程序所在的容器,数量可多可少Pause 容器,这是每个 Pod 都会有的一个根容器,它的作用有两个 可…

数据库索引深度解析:原理、类型与高效使用实践

🧠 一句话理解索引是什么? 索引就是数据库中的“目录”或“书签”,它能帮助我们快速找到数据的位置,而不是一页页地翻整本书。 🧩 一、为什么需要索引?(用生活化例子秒懂) 想象你在…

React 记账本项目实战:多页面路由、Context 全局

在本文中,我们将分享一个使用 React 开发的「记账本」项目的实战经验。该项目通过 VS Code 完成,包含首页、添加记录页、编辑页等多个功能页面,采用了 React Router 实现路由导航,使用 Context API 管理全局的交易记录状态,并引入数据可视化组件呈现不同月份的支出情况。项…

易路iBuilder智能体平台:人力资源领域AI落地,给“数据权限管控”一个最优解

近日,加拿大电子商务巨头Shopify的CEO Tobias Ltke分享了一份内部备忘录,明确表示有效使用AI已成为公司对每位员工的基本期望,并指出:各团队在招募新员工前,必须先确定是否能够利用AI完成工作。 而在全球范围内&#…

mybatis--多对一处理/一对多处理

多对一处理(association) 多个学生对一个老师 对于学生这边,关联:多个学生,关联一个老师[多对一] 对于老师而言,集合,一个老师有多个学生【一对多】 SQL: 测试环境搭建 1.导入依…

计算机视觉——图像金字塔与目标图像边缘检测原理与实践

一、两个图像块之间的相似性或距离度量 1.1 平方差和(SSD) 平方差和(SSD) 是一种常用的图像相似性度量方法。它通过计算两个图像在每个对应位置的像素值差的平方和来衡量两个图像之间的整体差异。如果两个图像在每个位置的像素值…

VRoid-Blender-Unity个人工作流笔记

流程 VRoid 选配模型>减面、减材质>导出vrm Blender(先有CATS、vrm插件) 导入vrm>Fix model>修骨骼>导出fbx Unity 找回贴图、改着色器、调着色器参数…… VRoid 减面 以模型不出现明显棱角为准。脸好像减面100也问题不大。 下…

Domain Adaptation领域自适应

背景与问题定义 传统监督学习假设:训练集与测试集数据分布一致。 Domain Shift:测试数据分布与训练数据不同,模型泛化性能骤降 。 例如在黑白图像上训练数字分类器,测试时用彩色图像,准确率骤降。 Domain Adaptatio…

从自动测量、8D响应到供应链协同的全链路质量管理数字化方案——全星QMS如何破解汽车行业质量困局

全星QMS如何破解汽车行业质量困局:从自动测量、8D响应到供应链协同的全链路数字化方案 在当今竞争激烈的市场环境中,企业要想脱颖而出,必须确保产品质量的稳定性和可靠性。 全星质量QMS软件系统凭借其强大的功能和灵活的架构,为企…

联想电脑开机出现Defalut Boot Device Missing or Boot Failed怎么办

目录 一、恢复bios默认设置 二、关机重启 三、“物理”方法 在图书馆敲代码时,去吃了午饭回来发现刚开机就出现了下图的问题(崩溃),想起之前也发生过一次 这样的问题,现在把我用到的方法写在下面,可能对…

SQL学习笔记-聚合查询

非聚合查询和聚合查询的概念及差别 1. 非聚合查询 非聚合查询(Non-Aggregate Query)是指不使用聚合函数的查询。这类查询通常用于从表中检索具体的行和列数据,返回的结果是表中的原始数据。 示例 假设有一个名为 employees 的表&#xff…

【Vue 3 + Element Plus 实现产品标签的动态添加、删除与回显】

🚀Vue 3 Element Plus 实现产品标签的动态添加、删除与回显 在后台管理系统中,我们经常需要对表单数据进行动态处理,尤其是类似“产品标签”这样的字段,它需要用户能够灵活添加、删除,并在编辑时自动回显。今天我们就…

IntelliJ 配置(二)配置相关类库(2)LineMarkerProvider

一、介绍 LineMarkerProvider 是 IntelliJ 平台插件开发中的一个接口,它的作用是在编辑器左侧的“行标记区域”(就是代码行号左边那一栏)添加各种图标、标记或导航链接。比如Java 类中看到的: 小绿色三角形(可以点击运…

从零开始学java--线性表

数据结构基础 目录 数据结构基础 线性表 顺序表 链表 顺序表和链表的区别: 栈 队列 线性表 线性表(linear list)是n个具有相同特性的数据元素的有限序列。 线性表中的元素个数就是线性表的长度,表的起始位置称为表头&am…

AD917X系列JESD204B MODE7使用

MODE7特殊在F8,M4使用2个复数通道 CH0_NCO10MHz CH1_NCO30MHZ DP_NCO50MHz DDS1偏移20MHz DDS2偏移40MHz