虚拟dom工作原理以及渲染过程

news2025/4/19 2:46:20

浏览器渲染引擎工作流程都差不多,大致分为5步,创建DOM树——创建StyleRules——创建Render树——布局Layout——绘制Painting

第一步,用HTML分析器,分析HTML元素,构建一颗DOM树(标记化和树构建)。

第二步,用CSS分析器,分析CSS文件和元素上的inline样式,生成页面的样式表

第三步,将DOM树和样式表,关联起来,构建一颗Render树/渲染树(这一过程又称为Attachment)。每个DOM节点都有attach方法,接受样式信息,返回一个render对象(又名renderer)。这些render对象最终会被构建成一颗Render树。

第四步,有了Render树,浏览器开始布局,为每个Render树上的节点确定一个在显示屏上出现的精确坐标。这个时候会发生重绘和重排

第五步,Render树和节点显示坐标都有了,就调用每个节点paint方法,把它们绘制出来。

DOM树的构建是文档加载完成开始的?构建DOM数是一个渐进过程,为达到更好用户体验,渲染引擎会尽快将内容显示在屏幕上。它不必等到整个HTML文档解析完毕之后才开始构建render数和布局。

Render树是DOM树和CSSOM树构建完毕才开始构建的吗?这三个过程在实际进行的时候又不是完全独立,而是会有交叉。会造成一边加载,一遍解析,一遍渲染的工作现象。

CSS的解析是从右往左逆向解析的(从DOM树的下-上解析比上-下解析效率高),嵌套标签越多,解析越慢。

DOM树和渲染树的区别?

DOM树是和HTML标签一一对应的,包含 head 和隐藏元素

渲染树是不包含 head 和隐藏元素

webkit渲染引擎工作流程:

二、JS操作真实DOM的代价!

用我们传统的开发模式,原生JS或JQ操作DOM时,浏览器会从构建DOM树开始从头到尾执行一遍流程。在一次操作中,我需要更新10个DOM节点,浏览器收到第一个DOM请求后并不知道还有9次更新操作,因此会马上执行流程,最终执行10次。例如,第一次计算完,紧接着下一个DOM更新请求,这个节点的坐标值就变了 发生了回流,前一次计算为无用功。计算DOM节点坐标值等都是白白浪费的性能。即使计算机硬件一直在迭代更新,操作DOM的代价仍旧是昂贵的,频繁操作还是会出现页面卡顿,影响用户体验。

三、为什么需要虚拟DOM,它有什么好处?

DOM操作是Web开发中非常昂贵和低效的操作,尤其是在用户界面频繁更新的情况下。此时,在每次数据更新时重新渲染整个DOM树会导致应用程序性能下降。

为了解决这个问题,虚拟DOM被引入到前端开发中。虚拟DOM把整个DOM树抽象成一个JS对象建立了一一对应的关系,那么每次 dom 的更改,通过找到相应对象,也就找到了相应的dom节点,再对其进行更新。这样的话,就能节省性能,因为JS 对象的查询,比对整个dom 树的查询,所消耗的性能要少。这样开发者就可以直接操作JS对象,而不需要频繁地操作DOM。

虚拟DOM简化了DOM操作,同时通过优化算法确保最小化DOM操作次数,从而提高应用性能。

虚拟DOM就是为了解决浏览器性能问题而被设计出来的。如前,若一次操作中有10次更新DOM的动作,虚拟DOM不会立即操作DOM,而是将这10次更新的diff内容保存到本地一个JS对象中,最终将这个JS对象一次性attch到DOM树上,再进行后续操作,避免大量无谓的计算量。所以,用JS对象模拟DOM节点的好处是,页面的更新可以先全部反映在JS对象(虚拟DOM)上,操作内存中的JS对象的速度显然要更快,等更新完成后,再将最终的JS对象映射成真实的DOM,交由浏览器去绘制。

模版转换成视图的过程

  在正式介绍Virtual DOM之前,我们有必要先了解下模版转换成视图的整个过程(如下图):

  • Vue.js通过编译将模版转换成渲染函数(render),执行渲染函数就可以得到一个虚拟DOM
  • 在对模型进行操作的时候,会触发对应的Dep中的Watcher对象。Watcher对象会调用对应的update来修改视图。这个过程主要是将新旧虚拟DOM进行差异对比,然后根据结果进行对比。
    简单点讲,在Vue的实现上,Vue模版编译成虚拟DOM渲染函数。结合Vue自带的响应系统,在状态改变时,Vue能够智能地计算出重新渲染组件的最小代价并应用到DOM操作上。

Vue的templete模版

先通过compile编译器把template转化成AST树,再得到的render函数返回(Vue的虚拟DOM节点)
步骤:

首先,通过compile编译器把template编译成AST语法树(abstract syntax tree 即 源代码的抽象语法结构的树状表现形式),compile是createCompiler的返回值,createCompiler是用以创建编译器的。另外compile还负责合并option。

然后,AST会经过generate(将AST语法树转化成render funtion字符串的过程)得到render函数,render的返回值是ue的虚拟DOM节点,

  • 我们先对上图几个概念嵌入解释:

  • 渲染函数:渲染函数是用来生成虚拟DOM的。Vue推荐使用模版来构建我们的应用界面,在实现中Vue布局模版编译成渲染函数,当然我们也可以不写模版,直接写渲染函数,这样子更接近编译后的模版。
  • vnode虚拟节点:它可以代表一个真实的DOM节点通过createElement方法能将vnode渲染成DOM节点,简单地说,虚拟节点可以理解成节点描述对象,它描述了应该怎样去创建真实的DOM节点。
  • patch(也称为patching算法):虚拟DOM最核心的部分,它可以将vnode渲染成真实的DOM,这个过程是对比新旧虚拟节点之间有哪些不同,然后根据对比结果找出需要更新的的节点进行更新。这点我们从单词含义就可以看出, patch本身就有补丁、修补的意思,其实际作用是在现有DOM上进行修改来实现更新视图的目的。Vue的Virtual DOM Patching算法是基于Snabbdom的实现,并在些基础上作了很多的调整和改进。

Virtual DOM (虚拟DOM)是什么?

  Virtual DOM 其实就是一棵以 JavaScript 对象( VNode 节点)作为基础的树,用对象属性来描述节点,实际上它只是一层对真实 DOM 的抽象。最终可以通过一系列操作使这棵树映射到真实环境上。

虚拟DOM把整个DOM树抽象成一个JS对象建立了一一对应的关系,那么每次 dom 的更改,通过找到相应对象,也就找到了相应的dom节点,再对其进行更新。这样的话,就能节省性能,因为JS 对象的查询,比对整个dom 树的查询,所消耗的性能要少。这样开发者就可以直接操作JS对象,而不需要频繁地操作DOM。

  简单来说,可以把Virtual DOM 理解为一个简单的JS对象,并且最少包含标签( tag)、属性(attrs)和子元素对象( children)三个属性。不同的框架对这三个属性的命名会有点差别。

对于虚拟DOM,咱们来看一个简单的实例,就是下图所示的这个,详细的阐述了模板 → 渲染函数 → 虚拟DOM树 → 真实DOM 的一个过程

虚拟节点是何时生成的

 在beforeMount之前生成,template上的变量也是在这个过程中求得的,data响应式数据也是在这个时候触发getter并收集依赖的。

虚拟DOM的更新(data中的数据一修改就会更新到视图上吗?)

 虚拟Dom的更新不会直接操作dom,而是更新虚拟Dom JS对象,然后渲染如果存在1000条数据遍历渲染,虚拟DOM会合并赋值和查找动作一次性渲染(1000js对象查找,1000js赋值),一次渲染。

Virtual DOM的优势

  • 具备跨平台的优势
    由于 Virtual DOM 是以 JavaScript 对象为基础而不依赖真实平台环境,所以使它具有了跨平台的能力,比如说浏览器平台、Weex、Node 等。

  • 操作 DOM 慢,js运行效率高。我们可以将DOM对比操作放在JS层,提高效率。
    因为DOM操作的执行速度远不如Javascript的运算速度快,因此,把大量的DOM操作搬运到Javascript中,运用patching算法来计算出真正需要更新的节点,最大限度地减少DOM操作,从而显著提高性能。

Virtual DOM 本质上就是在 JS 和 DOM 之间做了一个缓存。可以类比 CPU 和硬盘,既然硬盘这么慢,我们就在它们之间加个缓存:既然 DOM 这么慢,我们就在它们 JS 和 DOM 之间加个缓存。CPU(JS)只操作内存(Virtual DOM),最后的时候再把变更写入硬盘(DOM)

  • 提升渲染性能
    Virtual DOM的优势不在于单次的操作,而是在大量、频繁的数据更新下,能够对视图进行合理、高效的更新。

四、实现虚拟DOM

例如一个真实的DOM节点。

我们用JS来模拟DOM节点实现虚拟DOM。

其中的Element方法具体怎么实现的呢?

第一个参数是节点名(如div),第二个参数是节点的属性(如class),第三个参数是子节点(如ul的li)。除了这三个参数会被保存在对象上外,还保存了key和count。其相当于形成了虚拟DOM树。



有了JS对象后,最终还需要将其映射成真实DOM

我们已经完成了创建虚拟DOM并将其映射成真实DOM,这样所有的更新都可以先反应到虚拟DOM上,如何反应?需要用到Diff算法

两棵树如果完全比较时间复杂度是O(n^3),但参照《深入浅出React和Redux》一书中的介绍,React的Diff算法的时间复杂度是O(n)。要实现这么低的时间复杂度,意味着只能平层的比较两棵树的节点,放弃了深度遍历。这样做,似乎牺牲掉了一定的精确性来换取速度,但考虑到现实中前端页面通常也不会跨层移动DOM元素,这样做是最优的。

深度优先遍历,记录差异

。。。。

Diff算法操作

在实际代码中,会对新旧两棵树进行一个深度的遍历,每个节点都会有一个标记key。每遍历到一个节点就把该节点和新的树进行对比,如果有差异就记录到一个对象中。

下面我们创建一棵新树,用于和之前的树进行比较,来看看Diff算法是怎么操作的。

Vue中key值作用?
  • 1.diff算法时,会通过key先把 新DOM 与 旧DOM 进行对比记录差异,如果dom结构一致,则vue会复用旧的dom。
  • 2.使用key可以给dom添加一个 唯一标识符,让vue强制更新dom

为了保证遍历同级元素的唯一性,用来提高更新dom的性能,从原来上来说就是通过key来判断元素是否需要重新渲染,key的唯一性保证了元素的唯一性,key的作用就是更新组件的时候判断两个阶段是否相同,相同就复用,不相同就删除旧的创建新的。

v-for中要用key的原因是:

key只能是字符串或者数字
key必须是唯一
key:作用:提高重排效率,就地复用

  • key可以标识列表中每个元素的唯一性,方便Vue高效地更新虚拟DOM。
  • key主要用于dom diff算法,diff算法是同级比较,比较当前标签上的key和标签名,如果都一样,就只移动元素,不会重新创建和删除。
  • 如果没有key,Vue会使用“就地复用”策略,如果数据项的顺序改变,Vue不会移动DOM元素来匹配数据项的改变,而是简单复用原来位置的每个元素。
  • 尽量不要使用索引值index作为key,因为index会随着数据的增删而改变,导致key失效1。最好使用数据中的唯一标识,如id等。
diff 算法包括几个步骤:
  • 用 JavaScript 对象结构表示 DOM 树的结构;然后用这个树构建一个真正的 DOM 树,插到文档当中
  • 当状态变更的时候,重新构造一棵新的对象树。然后用新的树和旧的树进行比较,记录两棵树差异
  • 把所记录的差异应用到所构建的真正的DOM树上,视图就更新了

old Tree :

new Tree:

平层Diff,只有以下4种情况:

1、节点类型变了,例如下图中的P变成了H3。我们将这个过程称之为REPLACE。直接将旧节点卸载并装载新节点。旧节点包括下面的子节点都将被卸载,如果新节点和旧节点仅仅是类型不同,但下面的所有子节点都一样时,这样做效率不高。但为了避免O(n^3)的时间复杂度,这样是值得的。这也提醒了开发者,应该避免无谓的节点类型的变化,例如运行时将div变成p没有意义。

2、节点类型一样,仅仅属性或属性值变了。我们将这个过程称之为PROPS。此时不会触发节点卸载和装载,而是节点更新。

查找不同属性方法 :

3、文本变了,文本对也是一个Text Node,也比较简单,直接修改文字内容就行了,我们将这个过程称之为TEXT

4、移动/增加/删除 子节点,我们将这个过程称之为REORDER。看一个例子,在A、B、C、D、E五个节点的B和C中的BC两个节点中间加入一个F节点。

我们简单粗暴的做法是遍历每一个新虚拟DOM的节点,与旧虚拟DOM对比相应节点对比,在旧DOM中是否存在,不同就卸载原来的按上新的。这样会对F后边每一个节点进行操作。卸载C,装载F,卸载D,装载C,卸载E,装载D,装载E。效率太低。

如果我们在JSX里为数组或枚举型元素增加上key后,它能够根据key,直接找到具体位置进行操作,效率比较高。常见的最小编辑距离问题,可以用Levenshtein Distance算法来实现,时间复杂度是O(M*N),但通常我们只要一些简单的移动就能满足需要,降低精确性,将时间复杂度降低到O(max(M,N))即可。

最终Diff出来的结果:

映射成真实DOM

虚拟DOM有了,Diff也有了,现在就可以将Diff应用到真实DOM上了。深度遍历DOM将Diff的内容更新进去。

根据Diff更新DOM:

根据Diff更新DOM :

我们会有两个虚拟DOM(js对象,new/old进行比较diff),用户交互我们操作数据变化new虚拟DOM,old虚拟DOM会映射成实际DOM(js对象生成的DOM文档)通过DOM fragment操作给浏览器渲染。当修改new虚拟DOM,会把newDOM和oldDOM通过diff算法比较,得出diff结果数据表(用4种变换情况表示)。再把diff结果表通过DOM fragment更新到浏览器DOM中。

虚拟DOM的存在的意义?vdom 的真正意义是为了实现跨平台,服务端渲染,以及提供一个性能还算不错 Dom 更新策略。vdom 让整个 mvvm 框架灵活了起来

Diff算法只是为了虚拟DOM比较替换效率更高,通过Diff算法得到diff算法结果数据表(需要进行哪些操作记录表)。原本要操作的DOM在vue这边还是要操作的,只不过用到了js的DOM fragment来操作dom(统一计算出所有变化后统一更新一次DOM)进行浏览器DOM一次性更新。其实DOM fragment我们不用平时发开也能用,但是这样程序员写业务代码就用把DOM操作放到fragment里,这就是框架的价值,程序员才能专注于写业务代码

总结:Vue.js通过编译将模版转换成渲染函数(render),执行渲染函数就可以得到一个虚拟节点树(虚拟DOM),虚拟节点树(虚拟DOM)提供虚拟节点vnode和对新旧两个vnode进行比对并根据比对结果(patch对象记录差异更新视图)进行DOM操作来更新视图,达到减少对DOM的目的,从而减少浏览器的开销,提高渲染速度,改善用户体验。

五、Vue2与Vue3中diff算法的区别

  1. Vue 2 使用的是基于递归的双指针的 diff 算法对整个 Virtual DOM 树进行了完整的比较,而 Vue 3 使用的是基于数组的动态规划的 diff 算法。Vue 3 的算法效率更高,因为它使用了一些优化技巧,例如静态分析和标记(将组件标记为静态、动态或稳定)、按需更新等。
  2. Vue 2 的 diff 算法会对整个组件树进行完整的遍历和比较,而 Vue 3 的 diff 算法会跳过静态子树的比较,只对动态节点进行更新。这减少了不必要的比较操作,提高了性能。
  3. Vue 2 的 diff 算法对于列表渲染(v-for)时的元素重新排序会比较低效,需要通过给每个元素设置唯一的 key 来提高性能。而 Vue 3 的 diff 算法在列表渲染时,通过跟踪元素的移动,可以更好地处理元素的重新排序,无需设置 key。
  4. Vue 3 的 diff 算法对于静态节点的处理更加高效,静态节点只会在首次渲染时被处理,后续更新时会直接跳过比较和更新操作,减少了不必要的计算。
  5. Vue 3.x 的 diff 算法还在更新了多个组件时使用了异步更新,将多个更新任务一次性提交到队列中,只需要一次性的更新 DOM,减少了界面的重绘次数。
  6. 在 Vue 2 中,使用 Fragments 时会引入额外的 Virtual DOM 节点,导致在 diff 过程中产生额外的开销。
    Vue 3 中通过优化 Fragments 的处理方式,减少了额外节点的创建和比较,提高了对 Fragments 的 diff 效率。

VUE的单页应用 渲染 过程以及 核心概念(待补充)
H2279202642的博客
05-31 802
VUE的出现 渲染 过程

服务端渲染

最开始的页面渲染其实是服务端渲染的,浏览器将一个静态网页得模板发给服务端,服务端通过静态网也的模板开始渲染动态页面,最后浏览器接收到服务端渲染成功后的页。 (如下图)

前后端分离

直到后端工程师的工作压力大到一定的程度的时候,渲染动态页面的工作最终由前端工程师操手。

其流程为前端写好程序代码,发送到服务端,服务端只会发送一个空白的html回来给浏览器浏览器会开始解析css,js代码,并开始渲染页面,若需要获取各种业务数据,会向服务端继续发送ajax请求,服务端


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2332741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据采集爬虫三要素:User-Agent、随机延迟、代理ip

做爬虫的朋友都懂:你刚打开一个页面,还没来得及发第二个请求,服务器已经把你当成了“可疑流量”。403、429、验证码、JS挑战……这些“欢迎仪式”你是不是也经常收到?防爬策略越来越猛,采集工程师越来越秃。 但别慌&am…

汽车的四大工艺

文章目录 冲压工艺核心流程关键技术 焊接工艺核心流程 涂装工艺核心流程 总装工艺核心流程终检与测试静态检查动态检查四轮定位制动转鼓测试淋雨测试总结 简单总结下汽车的四大工艺(从网上找了一张图,感觉挺全面的)。 冲压工艺 将金属板材通过…

【JVM是什么?JVM解决什么问题?JVM在JDK体系中是什么?虚拟机和JVM、操作系统是什么关系?】

1. JVM 是什么? JVM(Java Virtual Machine,Java 虚拟机) 是一个虚拟的计算机程序,它是 Java 程序运行的核心环境。JVM 的主要职责是加载、验证、解释或编译 Java 字节码(.class 文件)&#xff…

10-MySQL-性能优化思路

1、优化思路 当我们发现了一个慢SQL的问题的时候,需要做性能优化,一般我们是为了提高SQL查询更快,一个查询的流程由下图的各环节组成,每个环节都会消耗时间,要减少消耗时候需要从各个环节都分析一遍。 2 连接配置优化 第一个环节是客户端连接到服务端,这块可能会出现服务…

MySQL学习笔记十

第十二章汇总数据 12.1聚集函数 聚集函数运行在行组上,计算和返回单个值。 12.1.1AVG()函数 输入: SELECT AVG(prod_price) AS avg_price FROM products; 输出: 说明:AVG()函数通过对表中行数计数并计算特定列值之和&#…

Redis快的原因

1、基于内存实现 Redis将所有数据存储在内存中,因此它可以非常快速地读取和写入数据,而无需像传统数据库那样将数据从磁盘读取和写入磁盘,这样也就不受I/O限制。 2、I/O多路复用 多路指的是多个socket连接;复用指的是复用一个线…

如何在React中集成 PDF.js?构建支持打印下载的PDF阅读器详解

本文深入解析基于 React 和 PDF.js 构建 PDF 查看器的实现方案,该组件支持 PDF 渲染、图片打印和下载功能,并包含完整的加载状态与错误处理机制。 完整代码在最后 一个PDF 文件: https://mozilla.github.io/pdf.js/web/compressed.tracemo…

【完美解决】VSCode连接HPC节点,已配置密钥却还是提示需要输入密码

目录 问题描述软件版本原因分析错误逻辑链 解决方案总结 问题描述 本人在使用 ​​VSCode Remote-SSH 插件​​连接超算集群节点时,遇到以下问题:已正确配置 SSH 密钥,且 VSCode 能识别密钥文件(如图1),但在…

【JSON2WEB】16 login.html 登录密码加密传输

【JSON2WEB】系列目录 【JSON2WEB】01 WEB管理信息系统架构设计 【JSON2WEB】02 JSON2WEB初步UI设计 【JSON2WEB】03 go的模板包html/template的使用 【JSON2WEB】04 amis低代码前端框架介绍 【JSON2WEB】05 前端开发三件套 HTML CSS JavaScript 速成 【JSON2WEB】06 JSO…

从递归入手一维动态规划

从递归入手一维动态规划 1. 509. 斐波那契数 1.1 思路 递归 F(i) F(i-1) F(i-2) 每个点都往下展开两个分支,时间复杂度为 O(2n) 。 在上图中我们可以看到 F(6) F(5) F(4)。 计算 F(6) 的时候已经展开计算过 F(5)了。而在计算 F(7)的时候,还需要…

轻量级爬虫框架Feapder入门:快速搭建企业级数据管道

一、目标与前置知识 1. 目标概述 本教程的主要目标是: 介绍轻量级爬虫框架 Feapder 的基本使用方式。快速搭建一个采集豆瓣电影数据的爬虫,通过电影名称查找对应的电影详情页并提取相关信息(电影名称、导演、演员、剧情简介、评分&#xf…

golang gmp模型分析

思维导图: 1. 发展过程 思维导图: 在单机时代是没有多线程、多进程、协程这些概念的。早期的操作系统都是顺序执行 单进程的缺点有: 单一执行流程、计算机只能一个任务一个任务进行处理进程阻塞所带来的CPU时间的浪费 处于对CPU资源的利用&…

【算法竞赛】树上最长公共路径前缀(蓝桥杯2024真题·团建·超详细解析)

目录 一、题目 二、思路 1. 问题转化:同步DFS走树 2. 优化:同步DFS匹配 3. 状态设计:dfs参数含义 4. 匹配过程:用 map 建立权值索引 5. 终止条件:无法匹配则更新答案 6. 总结 三、完整代码 四、知识点总…

【windows10】基于SSH反向隧道公网ip端口实现远程桌面

【windows10】基于SSH反向隧道公网ip端口实现远程桌面 1.背景2.SSH反向隧道3.远程连接电脑 1.背景 ‌Windows 10远程桌面协议的简称是RDP(Remote Desktop Protocol)‌。 RDP是一种网络协议,允许用户远程访问和操作另一台计算机。 远程桌面功…

Python----概率论与统计(贝叶斯,朴素贝叶斯 )

一、贝叶斯 1.1、贝叶斯定理 贝叶斯定理(Bayes Theorem)也称贝叶斯公式,是关于随机事件的条件概率的定理 贝叶斯的的作用:根据已知的概率来更新事件的概率。 1.2、定理内容 提示: 贝叶斯定理是“由果溯因”的推断&…

爬虫抓包工具和PyExeJs模块

我们在处理一些网站的时候, 会遇到一些屏蔽F12, 以及只要按出浏览器的开发者工具就会关闭甚至死机的现象. 在遇到这类网站的时候. 我们可以使用抓包工具把页面上屏蔽开发者工具的代码给干掉. Fiddler和Charles 这两款工具是非常优秀的抓包工具. 他们可以监听到我们计算机上所…

无人机击落技术难点与要点分析!

一、技术难点 1. 目标探测与识别 小型化和低空飞行:现代无人机体积小、飞行高度低(尤其在城市或复杂地形中),雷达和光学传感器难以有效探测。 隐身技术:部分高端无人机采用吸波材料或低可探测设计,进…

8.第二阶段x64游戏实战-string类

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 上一个内容:7.第二阶段x64游戏实战-分析人物属性 string类是字符串类,在计算机中…

Go语言sync.Mutex包源码解读

互斥锁sync.Mutex是在并发程序中对共享资源进行访问控制的主要手段,对此Go语言提供了非常简单易用的机制。sync.Mutex为结构体类型,对外暴露Lock()、Unlock()、TryLock()三种方法,分别用于阻塞加锁、解锁、非阻塞加锁操作(加锁失败…

C++实现文件断点续传:原理剖析与实战指南

文件传输示意图 一、断点续传的核心价值 1.1 大文件传输的痛点分析 网络闪断导致重复传输:平均重试3-5次。 传输进度不可回溯:用户无法查看历史进度。 带宽利用率低下:每次中断需从头开始。 1.2 断点续传技术优势 指标传统传输断点续传…