医疗人机交互层技术实施方案
一、多模态交互体系
1. 医疗语音识别引擎
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import torchaudio
class MedicalASR :
def __init__ ( self) :
self. processor = Wav2Vec2Processor. from_pretrained(
"medical-wav2vec2-base-zh-CN" )
self. model = Wav2Vec2ForCTC. from_pretrained(
"medical-wav2vec2-base-zh-CN" )
self. resampler = torchaudio. transforms. Resample(
orig_freq= 48000 , new_freq= 16000 )
self. medical_terms = {
"xianweijing" : "纤维镜" ,
"ganmeisu" : "干酶素"
}
def transcribe ( self, audio_path) :
waveform, sample_rate = torchaudio. load( audio_path)
waveform = self. resampler( waveform)
inputs = self. processor(
waveform. squeeze( ) . numpy( ) ,
sampling_rate= 16000 ,
return_tensors= "pt" ,
padding= "longest"
)
with torch. no_grad( ) :
logits = self. model(
inputs. input_values,
attention_mask= inputs. attention_mask
) . logits
pred_ids = torch. argmax( logits, dim= - 1 )
text = self. processor. batch_decode( pred_ids) [ 0 ]
return self. _correct_medical_terms( text)
def _correct_medical_terms ( self, text) :
for term, correct in self. medical_terms. items( ) :
text = text. replace( term, correct)
return text
2. 无障碍交互系统
class AccessibilityInterface {
private eyeTracker: EyeTracker;
private hapticDevice: HapticController;
constructor ( ) {
this . eyeTracker = new TobiiEyeX ( ) ;
this . hapticDevice = new HapticGlove ( ) ;
}
setupInteraction ( ) {
document. addEventListener ( 'eyegaze' , ( event) => {
const target = document. elementFromPoint (
event. detail. x,
event. detail. y
) ;
if ( target?. classList. contains ( 'focusable' ) ) {
this . hapticDevice. vibrate ( 'soft' ) ;
target. dispatchEvent ( new MouseEvent ( 'hover' ) ) ;
}
} ) ;
speechSynthesis. addEventListener ( 'start' , ( ) => {
this . hapticDevice. vibrate ( 'double' ) ;
} ) ;
}
private vibrationPatterns = {
confirm: [ 100 , 50 , 100 ] ,
alert: [ 300 , 100 , 300 ] ,
progress: [ 50 , 50 ]
} ;
}
3. 情境感知服务
public class ContextAwareService {
private BeaconDetector beaconDetector;
private PatientStatusPredictor predictor;
public ContextAwareService ( ) {
this . beaconDetector = new AltBeaconScanner ( ) ;
this . predictor = new RandomForestPredictor ( ) ;
}
public void startMonitoring ( String patientId) {
beaconDetector. registerListener ( ( beacons) -> {
Beacon nearest = Collections . min ( beacons,
Comparator . comparingDouble ( Beacon :: getDistance ) ) ;
double [ ] features = extractFeatures ( nearest) ;
int predictedStage = predictor. predictStage ( features) ;
updateUI ( patientId, nearest. getLocation ( ) , predictedStage) ;
} ) ;
}
private double [ ] extractFeatures ( Beacon beacon) {
return new double [ ] {
beacon. getDistance ( ) ,
beacon. getRssi ( ) ,
System . currentTimeMillis ( ) / 1000.0
} ;
}
}
二、智能容错机制
1. 对话状态跟踪(DST)
class MedicalDST :
def __init__ ( self) :
self. tokenizer = AutoTokenizer. from_pretrained(
"bert-base-chinese-medical" )
self. model = AutoModelForSequenceClassification. from_pretrained(
"bert-base-chinese-medical" ,
num_labels= len ( DIALOG_STATES)
)
self. state_machine = {
"初诊" : [ "主诉" , "病史" , "检查" ] ,
"复诊" : [ "报告解读" , "治疗方案" ]
}
def track_state ( self, dialog_history) :
context = "\n" . join( dialog_history[ - 3 : ] )
inputs = self. tokenizer(
context,
return_tensors= "pt" ,
truncation= True ,
max_length= 512
)
outputs = self. model(