DeepSeek底层揭秘——《推理时Scaling方法》内容理解

news2025/4/17 8:11:51

4月初,DeepSeek 提交到 arXiv 上的最新论文正在 AI 社区逐渐升温。

论文核心内容理解

DeepSeek与清华大学联合发布的论文《奖励模型的推理时Scaling方法及其在大规模语言模型中的应用》,核心在于提出一种新的推理时Scaling方法,即通过动态调整奖励机制,而非改变模型参数,来提升大规模语言模型(LLM)的推理能力。这种方法突破了传统依赖强化学习(RL)在训练阶段优化模型性能的局限,为LLM推理能力的提升提供了全新方法论。

Scaling 的具体对象

论文中的"Scaling"主要指推理计算资源的扩展,而非模型大小(参数量)或数据规模的扩展。具体来说,是在推理过程中通过增加计算资源,如多次采样、并行采样等,来提升模型的推理性能。

推理时的 Scaling 策略

论文提出了多种推理时Scaling策略:

  1. 多次采样与并行采样:通过多次采样生成不同的原则集和相应的批评,然后投票选出最终的奖励。更大规模的采样可以更准确地判断具有更高多样性的原则,并以更细的粒度输出奖励。
  2. 自我原则批评调整(SPCT):包含拒绝式微调(作为冷启动阶段)和基于规则的在线强化学习,通过不断优化生成的准则和评论,增强泛化型奖励生成能力,促使奖励模型在推理阶段展现良好扩展能力。
  3. 元奖励模型(Meta Reward Model):引入多层级奖励评估体系,统一处理单响应、多响应及对比评分的多样化场景,进一步提升推理效果。

目标优化

推理时进行Scaling的主要目标是提升模型在推理阶段的性能,具体包括:

  1. 提高模型输出的逻辑一致性和事实准确性。
  2. 增强模型在复杂多变任务中的适应性和稳定性,如数学推理、代码生成等任务。
  3. 在不增加模型参数的情况下,通过动态调整奖励机制,使模型能够更好地处理不同类型的输入和任务。

适用场景

论文提出的Scaling策略主要适用于以下场景:

  1. 模型类型:主要适用于大规模语言模型(LLM),尤其是基于奖励模型(RM)的LLM。
  2. 任务类型:适用于需要复杂推理的任务,如数学推理、代码生成等,这些任务需要模型在推理过程中进行多步思考和逻辑判断。
  3. 应用场景:既可用于在线服务,也可用于离线推理。对于在线服务,能够实时提升模型的推理性能;对于离线推理,可以通过增加计算资源来获得更准确的结果。

理论分析

论文从多个角度对Scaling策略进行了理论分析:

  1. 奖励机制的优化:通过SPCT方法,模型能够自适应生成高质量的评判原则和批评内容,从而优化奖励机制。这种优化基于在线强化学习,能够不断提升模型的泛化能力和适应性。
  2. 计算资源的利用:通过多次采样和并行采样,模型能够在推理阶段充分利用计算资源,提高推理的准确性和效率。这种策略在计算复杂度上具有一定的优势,能够在有限的资源内获得更好的性能。
  3. 模型性能的提升:论文通过理论分析证明,推理阶段的Scaling策略能够显著提升模型的性能,甚至超过通过增加模型规模所带来的训练效果提升。

实验验证

论文进行了充分的实验验证,实验结果支持论文的结论:

  1. 实验设置:研究者们构建了DeepSeek-GRM-27B模型,并将其与多个现有方法和模型进行比较。实验涵盖了多个综合RM基准测试,包括数学推理和代码生成等任务。
  2. 实验结果:SPCT方法显著提高了GRM的质量和可扩展性,在多个基准测试中优于现有方法和模型。例如,在GSM8K数学推理测试中,准确率提升了12%;在代码生成任务中,执行成功率提高了19%。
  3. 与大规模模型的比较:研究者们还将DeepSeek-GRM-27B的推理时间扩展性能与多达671B参数的较大模型进行了比较,发现它在模型大小上可以获得比训练时间扩展更好的性能。

创新性

论文的创新点主要体现在以下几个方面:

  1. 提出新的Scaling方法:首次提出“推理时Scaling”这一概念,强调通过动态调整奖励机制来提升模型的推理能力,而非传统的通过增加模型参数或训练数据。
  2. SPCT方法:提出了一种新的学习方法——自我原则批评调整(SPCT),用于提升通用奖励模型在推理阶段的可扩展性。该方法通过拒绝式微调和基于规则的在线强化学习,显著提高了模型的性能。
  3. 元奖励模型:引入了元奖励模型(Meta Reward Model),进一步优化了推理过程中的奖励机制,提升了模型在复杂任务中的表现。
  4. 实验验证:通过在多个基准测试中的实验验证,证明了所提出方法的有效性和优越性,为LLM推理能力的提升提供了有力的证据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2330608.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaScript之Json数据格式

介绍 JavaScript Object Notation, js对象标注法,是轻量级的数据交换格式完全独立于编程语言文本字符集必须用UTF-8格式,必须用“”任何支持的数据类型都可以用JSON表示JS内内置JSON解析JSON本质就是字符串 Json对象和JS对象互相转化 前端…

使用 Rsync + Lsyncd 实现 CentOS 7 实时文件同步

文章目录 🌀使用 Rsync Lsyncd 实现 CentOS 7 实时文件同步前言介绍架构图🧱系统环境🔧Rsync配置(两台都需安装)关闭SELinux(两台都需) 📦配置目标端(client&#xff09…

Android studio学习之路(六)--真机的调试以及多媒体照相的使用

多媒体应用(语言识别,照相,拍视频)在生活的各个方面都具有非常大的作用,所以接下来将会逐步介绍多媒体的使用,但是在使用多媒体之前,使用模拟器肯定是不行的,所以我们必须要使用真机…

Qt 资源文件(.qrc 文件)

Qt 资源文件(.qrc 文件)是 Qt 提供的一种机制,用来将文件(如图像、音频、文本文件等)嵌入到应用程序中,使得这些文件不需要依赖外部文件路径,而是直接打包到程序的可执行文件中。通过使用 Qt 资…

PandaAI:一个基于AI的对话式数据分析工具

PandaAI 是一个基于 Python 开发的自然语言处理和数据分析工具,支持问答式(ChatGPT)的数据分析和报告生成功能。PandaAI 提供了一个开源的框架,主要核心组件包含用于数据处理的数据准备层(Pandas)以及实现 …

【C++算法】50.分治_归并_翻转对

文章目录 题目链接:题目描述:解法C 算法代码:图解 题目链接: 493. 翻转对 题目描述: 解法 分治 策略一:计算当前元素cur1后面,有多少元素的两倍比我cur1小(降序) 利用单…

基于pycatia的CATIA层级式BOM生成器开发全解析

引言:BOM生成技术的革新之路 在高端装备制造领域,CATIA的BOM管理直接影响着研发效率和成本控制。传统VBA方案 虽能实现基础功能,但存在代码维护困难、跨版本兼容性差等痛点。本文基于pycatia框架,提出一种支持动态层级识别、智能查重、Excel联动的BOM生成方案,其核心突破…

Flink 1.20 Kafka Connector:新旧 API 深度解析与迁移指南

Flink Kafka Connector 新旧 API 深度解析与迁移指南 一、Flink Kafka Connector 演进背景 Apache Flink 作为实时计算领域的标杆框架,其 Kafka 连接器的迭代始终围绕性能优化、语义增强和API 统一展开。Flink 1.20 版本将彻底弃用基于 FlinkKafkaConsumer/FlinkK…

2025年渗透测试面试题总结- 某四字大厂面试复盘扩展 一面(题目+回答)

网络安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 某四字大厂面试复盘扩展 一面 一、Java内存马原理与查杀 二、冰蝎与哥斯拉原理对比(技术演…

批量压缩 jpg/png 等格式照片|批量调整图片的宽高尺寸

图片格式种类非常的多,并且不同的图片由于像素、尺寸不一样,可能占用的空间也会不一样。文件太大会占用较多的磁盘空间,传输及上传系统都非常不方便,可能会收到限制,因此我们经常会碰到需要对图片进行压缩的需求。如何…

【动手学深度学习】卷积神经网络(CNN)入门

【动手学深度学习】卷积神经网络(CNN)入门 1,卷积神经网络简介2,卷积层2.1,互相关运算原理2.2,互相关运算实现2.3,实现卷积层 3,卷积层的简单应用:边缘检测3.1&#xff0…

在huggingface上制作小demo

在huggingface上制作小demo 今天好兄弟让我帮他搞一个模型,他有小样本的化学数据,想让我根据这些数据训练一个小模型,他想用这个模型预测一些值 最终我简单训练了一个小模型,起初想把这个模型和GUI界面打包成exe发给他&#xff0…

51.评论日记

千万不能再挖了,否则整个华夏文明将被改写。_哔哩哔哩_bilibili 2025年4月7日22:13:42

SpringCloud第二篇:注册中心Eureka

注册中心的意义 注册中心 管理各种服务功能包括服务的注册、发现、熔断、负载、降级等,比如dubbo admin后台的各种功能。 有了注册中心,调用关系的变化,画几个简图来看一下。(了解源码可求求: 1791743380) 服务A调用服务B 有了注册中心之后&a…

ES 参数调优

1、refresh_interval 控制索引刷新的时间间隔。增大这个值可以减少I/O操作,从而提升写入性能,但会延迟新文档的可见性 查看 GET /content_erp_nlp_help_202503191453/_settings?include_defaultstrue 动态修改:refresh_interval 是一个动态…

用claude3.7,不到1天写了一个工具小程序(11个工具6个游戏)

一、功能概览和本文核心 本次开发,不是1天干撸,而是在下班后或早起搞的,总体加和计算了一下,大概1天的时间(12个小时),平常下班都是9点的衰仔,好在还有双休,谢天谢地。 …

【GeoDa使用】空间自相关分析操作

使用 GeoDa 软件进行空间自相关分析 双击打开 GeoDa 软件 选择 .shp 文件 导入文件 空间权重矩阵(*.gal / *.gwt)是进行任何空间分析的前提 构建空间权重矩阵 空间权重矩阵(Spatial Weights Matrix) 是一个用来描述空间对象之间…

C++基于rapidjson的Json与结构体互相转换

简介 使用rapidjson库进行封装,实现了使用C对结构体数据和json字符串进行互相转换的功能。最短只需要使用两行代码即可无痛完成结构体数据转换为Json字符串。 支持std::string、数组、POD数据(int,float,double等)、std::vector、嵌套结构体…

OpenStack Yoga版安装笔记(十七)安全组笔记

一、安全组与iptables的关系 OpenStack的安全组(Security Group)默认是通过Linux的iptables实现的。以下是其主要实现原理和机制: 安全组与iptables的关系 OpenStack的安全组规则通过iptables的规则链实现。每条安全组规则会被转换为相应的i…

通义万相2.1 图生视频:为AI绘梦插上翅膀,开启ALGC算力领域新纪元

通义万相2.1图生视频大模型 通义万相2.1图生视频技术架构万相2.1的功能特点性能优势与其他工具的集成方案 蓝耘平台部署万相2.1核心目标典型应用场景未来发展方向 通义万相2.1ALGC实战应用操作说明功能测试 为什么选择蓝耘智算蓝耘智算平台的优势如何通过API调用万相2.1 写在最…