Pyspark学习二:快速入门基本数据结构

news2025/4/4 12:24:48

写在前面:实际工作中其实不需要自己安装和配置,更重要的是会用。所以就不研究怎么安装配置了。
前面介绍过:简单来说,Spark是一款分布式的计算框架,用于调度成百上千的服务器集群,计算TB、PB乃至EB级别的海量数据。Spark作为全球顶级的分布式计算框架,支持众多的编程语言进行开发。Python语言,则是Spark重点支持的方向,体现为Python第三方库:PySpark。

一、快速入门

PySpark 应用程序从初始化开始,SparkSession这是 PySpark 的入口点。如下:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

刚接触Pyspark你可能有点懵,为啥你看别的教程可能发现:

使用Pyspark首先需要构建一个执行环境入口对象,PySpark的执行环境入口对象是类SparkContext

1.1. SparkSession 和 SparkContext 的区别

在Apache Spark中,SparkSession和SparkContext是两个核心的概念,他们在不同版本的Spark使用。

SparkContext

SparkContext是老一代API的核心入口点,它代表了一个到Spark集群的连接。通过SparkContext,你可以访问分布式计算的所有功能,比如创建RDD(Resilient Distributed Dataset),执行任务等。它是与集群交互的主要方式,在Spark应用程序中扮演着至关重要的角色。每个JVM中只能有一个活跃的SparkContext。在早期版本的Spark中,开发者直接使用SparkContext来编写程序。

SparkSession

SparkSession是在Spark 2.0中引入的一个新的抽象层,旨在为开发者提供一个统一的切入点来使用Spark的所有功能,包括DataFrame API、SQL查询、流处理等等。SparkSession内部包含了SparkContext,同时也提供了更高级的功能,使得操作更加简便。它允许你无缝地在不同类型的Spark API之间切换,而不需要显式地管理底层的SparkContext。

  • 统一性:SparkSession提供了一种统一的方式来访问Spark的各种功能,避免了需要单独初始化SQLContext、HiveContext以及SparkContext的情况。
  • 易用性:对于新用户来说,SparkSession更加直观易用,因为它简化了很多配置和初始化过程。
  • 功能性:除了包含原有的SparkContext功能外,还增加了对DataFrame和Dataset的支持,可以直接运行SQL查询,支持流处理等更多高级特性。

总结来说,如果你正在使用的是较新版本的Spark,推荐使用SparkSession作为你的主要编程入口,因为它不仅涵盖了SparkContext的所有功能,而且还提供了额外的高级特性,使得开发更加高效便捷。而对于那些仍在维护基于旧版Spark的应用程序的开发者来说,理解并使用SparkContext仍然是必要的。

二、DataFrame 创建

通常, pyspark.sql.SparkSession.createDataFrame 通过传递列表、元组、字典和pyspark.sql.Row 的列表、由此类列表组成的 RDD 来创建 PySpark DataFrame。
pyspark.sql.SparkSession.createDataFrame使用schema参数来指定 DataFrame 的数据类型。当省略时,PySpark 通过从数据中抽取样本来推断相应的数据类型。

  • eg1:从行列表中创建一个不指明数据类型的 PySpark DataFrame
from datetime import datetime, date
import pandas as pd
from pyspark.sql import Row

df = spark.createDataFrame([
    Row(a=1, b=2., c='string1', d=date(2000, 1, 1), e=datetime(2000, 1, 1, 12, 0)),
    Row(a=2, b=3., c='string2', d=date(2000, 2, 1), e=datetime(2000, 1, 2, 12, 0)),
    Row(a=4, b=5., c='string3', d=date(2000, 3, 1), e=datetime(2000, 1, 3, 12, 0))
])
df
------------------------------------------------------------------------------------------
out:DataFrame[a:bigint,b:double,c:字符串,d:日期,e:时间戳]
  • eg2:创建具有明确数据类型的 PySpark DataFrame。
df = spark.createDataFrame([
    (1, 2., 'string1', date(2000, 1, 1), datetime(2000, 1, 1, 12, 0)),
    (2, 3., 'string2', date(2000, 2, 1), datetime(2000, 1, 2, 12, 0)),
    (3, 4., 'string3', date(2000, 3, 1), datetime(2000, 1, 3, 12, 0))
], schema='a long, b double, c string, d date, e timestamp')
df
------------------------------------------------------------------------------------------
out:DataFrame[a:bigint,b:double,c:字符串,d:日期,e:时间戳]
  • eg3:直接用pandas 的 DataFrame 创建 PySpark DataFrame
pandas_df = pd.DataFrame({
    'a': [1, 2, 3],
    'b': [2., 3., 4.],
    'c': ['string1', 'string2', 'string3'],
    'd': [date(2000, 1, 1), date(2000, 2, 1), date(2000, 3, 1)],
    'e': [datetime(2000, 1, 1, 12, 0), datetime(2000, 1, 2, 12, 0), datetime(2000, 1, 3, 12, 0)]
})
df = spark.createDataFrame(pandas_df)
df
------------------------------------------------------------------------------------------
out:DataFrame[a:bigint,b:double,c:字符串,d:日期,e:时间戳]
  • 上面创建的 DataFrames 都具有相同的结果和模式。
# All DataFrames above result same.
df.show()
df.printSchema()

------------------------------------out------------------------------------------------------
+---+---+-------+----------+-------------------+ 
| a| b| c| d| e| 
+---+----+----------+----------+-------------------+ 
| 1|2.0|字符串1|2000-01-01|2000-01-01 12:00:00| 
| 2|3.0|字符串2|2000-02-01|2000-01-02 12:00:00| 
| 3|4.0|字符串3|2000-03-01|2000-01-03 12:00:00| 
+---+---+-------+----------+-------------------+ 

root 
 |-- a: long(可空 = true)
 |-- b: double(可空 = true)
 |-- c: 字符串(可空 = true)
 |-- d: 日期(可空 = true)
 |-- e: 时间戳(可空 = true)
  • 当创建了一个PySpark DataFrame,你可以通过如下语法查看其基本的数据结构和数据类型。
df.show(1)
df.show(1, vertical=True)  # 行也可以垂直显示。当行太长而无法水平显示时,这很有用。
df.columns 
df.select("a", "b", "c").describe().show()  # 显示 DataFrame 的摘要
  • DataFrame.collect() 将分布式数据作为 Python 中的本地数据收集到驱动程序端。方便进行各种运算操作。
df.collect()

[out]:
[行(a=1,b=2.0,c='string1',d=datetime.date(2000, 1, 1),e=datetime.datetime(2000, 1, 1, 12, 0)),
 行(a=2,b=3.0,c='string2',d=datetime.date(2000, 2, 1),e=datetime.datetime(2000, 1, 2, 12, 0)),
 行(a=3,b=4.0,c='string3',d=datetime.date(2000, 3, 1),e=datetime.datetime(2000, 1, 3, 12, 0))]
  • 为了避免引发内存不足异常,请使用DataFrame.take()或DataFrame.tail()。
df.take(1)
[out]:
[Row(a=1,b=2.0,c='string1',d=datetime.date(2000, 1, 1),e=datetime.datetime(2000, 1, 1, 12, 0))]
  • PySpark DataFrame 还提供转换回pandas DataFrame 的功能,以利用 pandas API。
df.toPandas()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2327901.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Vue中虚拟DOM创建到挂载的过程

Vue中虚拟DOM创建到挂载的过程 流程概括下来基本上就是:模板 → AST → render函数 → 虚拟节点 → 挂载 AST:抽象语法树,它用于记录原始代码中所有的关键信息,根据AST可以将代码从一种语言转化为另一种语言。 虚拟DOM创建到挂载…

选择网上购物系统要看几方面?

随着电子商务的迅猛发展,选择一个合适的网上购物系统已成为许多企业成功的关键。无论是初创企业还是已经成熟的公司,选择合适的购物系统都能显著提升用户体验、提高销售额和优化运营效率。本文将从几个重要方面探讨选择网上购物系统时需要考虑的关键因素…

定制开发开源AI智能名片S2B2C商城小程序:技术赋能商业价值实现路径研究

摘要 在数字经济与社交新零售蓬勃发展的背景下,本研究聚焦"定制开发开源AI智能名片S2B2C商城小程序"这一创新技术解决方案,通过解析其技术架构、功能模块及业务应用场景,探讨其如何支持企业目标达成、补充技术栈短板、实现数据整合…

美关税加征下,Odoo免费开源ERP如何助企业破局?

近期,美国特朗普政府推行的关税政策对全球供应链和进出口企业造成巨大冲击,尤其是依赖中美贸易的企业面临成本激增、利润压缩和合规风险。在此背景下,如何通过数字化转型优化管理效率、降低运营成本成为企业生存的关键。本文以免费开源ERP系统…

Unity中 JobSystem使用整理

Unity 的JobSystem允许创建多线程代码,以便应用程序可以使用所有可用的 CPU 内核来执行代码,这提供了更高的性能,因为您的应用程序可以更高效地使用运行它的所有 CPU 内核的容量,而不是在一个 CPU 内核上运行所有代码。 可以单独使…

42.C++11-右值引用与移动语义/完美转发

⭐上篇文章:41.C哈希6(哈希切割/分片/位图/布隆过滤器与海量数据处理场景)-CSDN博客 ⭐本篇代码:c学习/22.C11新特性的使用 橘子真甜/c-learning-of-yzc - 码云 - 开源中国 (gitee.com) ⭐标⭐是比较重要的部分 目录 一. 右值引用…

LeetCode题二:判断回文

查阅资料我得到的结果远没有大佬们的做法更省时间&#xff0c;而且还很麻烦 我的代码(完整)&#xff1a; class Solution:def isPalindrome(self, x: int) -> bool:# 若 x 为负数&#xff0c;由于负数不可能是回文数&#xff0c;直接返回 Falseif x < 0:return False# …

[王阳明代数讲义]琴语言类型系统工程特性

琴语言类型系统工程特性 层展物理学组织实务与艺术与琴生生.物机.械科.技工.业研究.所软凝聚态物理开发工具包社会科学气质砥砺学人生意气场社群成员魅力场与心气微积分社会关系力学 意气实体过程图论信息编码&#xff0c;如来码导引 注意力机制道装Transformer架构的发展标度律…

问题:tomcat下部署eureka双重路径

开发时在tomcat下启动eureka服务 客户端注册时需要地址需要注意 http://localhost:8761/eureka/eureka 后面一个eureka与tomcat context-path有关系按实际配置替换 如果不想要两个path可将tomcat context-path写为 / 建议使用 / 避免出现其他问题 如图

React(九)React Hooks

初识Hook 我们到底为什么需要hook那? 函数组件类组件存在问题 函数组件存在的问题&#xff1a; import React, { PureComponent } from reactfunction HelloWorld2(props) {let message"Hello world"// 函数式组件存在的缺陷&#xff1a;// 1.修改message之后&a…

《AI大模型应知应会100篇》加餐篇:LlamaIndex 与 LangChain 的无缝集成

加餐篇&#xff1a;LlamaIndex 与 LangChain 的无缝集成 问题背景&#xff1a;在实际应用中&#xff0c;开发者常常需要结合多个框架的优势。例如&#xff0c;使用 LangChain 管理复杂的业务逻辑链&#xff0c;同时利用 LlamaIndex 的高效索引和检索能力构建知识库。本文在基于…

元素三大等待

硬性等待&#xff08;强制等待&#xff09; 线程休眠&#xff0c;强制等待 Thread.sleep(long millis);这是最简单的等待方式&#xff0c;使用time.sleep()方法来实现。在代码中强制等待一定的时间&#xff0c;不论元素是否已经加载完成&#xff0c;都会等待指定的时间后才继…

【DY】信息化集成化信号采集与处理系统;生物信号采集处理系统一体机

MD3000-C信息化一体机生物信号采集处理系统 实验平台技术指标 01、整机外形尺寸&#xff1a;1680mm(L)*750mm(w)*2260mm(H)&#xff1b; 02、实验台操作面积&#xff1a;750(w)*1340(L&#xff09;&#xff08;长*宽&#xff09;&#xff1b; 03、实验台面离地高度&#xf…

康谋分享 | 仿真驱动、数据自造:巧用合成数据重构智能座舱

随着汽车向智能化、场景化加速演进&#xff0c;智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测&#xff0c;从乘员识别到安全带状态判断&#xff0c;座舱内的每一次行为都蕴含着巨大的安全与体验价值。 然而&#xff0c;这些感知系统要在多样驾驶行为、…

Vue 数据传递流程图指南

今天&#xff0c;我们探讨一下 Vue 中的组件传值问题。这不仅是我们在日常开发中经常遇到的核心问题&#xff0c;也是面试过程中经常被问到的重要知识点。无论你是初学者还是有一定经验的开发者&#xff0c;掌握这些传值方式都将帮助你更高效地构建和维护 Vue 应用 目录 1. 父…

【C语言】strstr查找字符串函数

一、函数介绍 strstr 是 C 语言标准库 <string.h> 中的字符串查找函数&#xff0c;用于在主字符串中查找子字符串的首次出现位置。若找到子串&#xff0c;返回其首次出现的地址&#xff1b;否则返回 NULL。它是处理字符串匹配问题的核心工具之一。 二、函数原型 char …

机器学习、深度学习和神经网络

机器学习、深度学习和神经网络 术语及相关概念 在深入了解人工智能&#xff08;AI&#xff09;的工作原理以及它的各种应用之前&#xff0c;让我们先区分一下与AI密切相关的一些术语和概念&#xff1a;人工智能、机器学习、深度学习和神经网络。这些术语有时会被交替使用&#…

数字孪生在智慧城市中的前端呈现与 UI 设计思路

一、数字孪生技术在智慧城市中的应用与前端呈现 数字孪生技术通过创建城市的虚拟副本&#xff0c;实现了对城市运行状态的实时监控、分析与预测。在智慧城市中&#xff0c;数字孪生技术的应用包括交通流量监测、环境质量分析、基础设施管理等。其前端呈现主要依赖于Web3D技术、…

Android OpenGLES 360全景图片渲染(球体内部)

概述 360度全景图是一种虚拟现实技术&#xff0c;它通过对现实场景进行多角度拍摄后&#xff0c;利用计算机软件将这些照片拼接成一个完整的全景图像。这种技术能够让观看者在虚拟环境中以交互的方式查看整个周围环境&#xff0c;就好像他们真的站在那个位置一样。在Android设备…

LETTERS(DFS)

【题目描述】 给出一个rowcolrowcol的大写字母矩阵&#xff0c;一开始的位置为左上角&#xff0c;你可以向上下左右四个方向移动&#xff0c;并且不能移向曾经经过的字母。问最多可以经过几个字母。 【输入】 第一行&#xff0c;输入字母矩阵行数RR和列数SS&#xff0c;1≤R,S≤…