深度学习中常见的专业术语汇总

news2025/4/1 16:59:56

本硕博都是搞机械的匠人,当然也想做一下交叉学科的东西,蹭一下人工智能的热点。虽然世界是个草台班子,但是来都来了,咱也要把这场戏演好。

记得之前网上爆料有位大学生发了很多水文,对,是交叉学科的,把CS的东西用到自己的专业上。由于出名了,论文就立马受到各大网友关注,离谱的是有个SSIM(FID?越小越好)指标本来是越大越好,上界是1,结果论文列出的结果大于1。

因此,水归水,打好基础还是必要的,毕竟磨刀不误砍柴工,读了博士在打工也不迟。

Pipeline、Framework、Structure、Architecture

  • Pipeline:指的是一系列数据处理步骤或任务的集合。在机器学习项目中,pipeline可能包括数据收集、清洗、特征提取和模型训练等步骤。
  • Framework:指的是为解决一类特定问题而设计的预制结构或方法集合。
  • Structure:深度学习模型的网络结构,即具体的网络结构。
  • Architecture:比structure 更高一级,强调模型的整体设计,如整体拓扑结构。

Baseline 、Benchmark

  • Baseline:传统或已有的方法,作为新方法改进的参照。如果新方法在指标上超过baseline,就说明有进步。
  • Benchmark:通常指一组标准数据集或者评价指标,用于测试和比较不同方法的性能。

Backbone、Neck 、Head

  • Backbone:特征提取主干,常见的有CNN、ResNet等,负责抽取原始数据中的关键信息。
  • Neck:介于backbone和head之间的网络,一般指中间层,用于对来自backbone的输出进行降维或者调整。
  • Head:指模型的输出层,对来自neck处理后的特征进行输出。对于分类任务,则head可能是一些系列全连接层,并输出最终分类结果。

其他

  • Warmup:在模型训练时前面几个epoch用小的学习率热身,有助于收敛和提升训练的稳定性。一般而言,先用小的学习率热身,然后增大学习率,最后学习率衰减。
  • Bottleneck Layer:如ResNet中,对前一个输入先对通道数降维,然后恢复通道数与输入一致,这种类似瓶颈的结构,称为瓶颈层。
  • Ground truth:在图像分类中, 真实的标签称为ground truth。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2324870.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

第六届 蓝桥杯 嵌入式 省赛

参考 第六届蓝桥杯嵌入式省赛程序设计题解析(基于HAL库)_蓝桥杯嵌入式第六届真题-CSDN博客 一、分析功能 RTC 定时 1)时间初始化 2)定时上报电压时间 ADC测量 采集电位器的输出电压信号。 串行功能 1)传送要设置…

爱普生FC-135晶振5G手机的极端温度性能守护者

在5G时代,智能手机不仅需要高速率与低延迟,更需在严寒、酷暑、振动等复杂环境中保持稳定运行。作为 5G 手机的核心时钟源,爱普生32.768kHz晶振FC-135凭借其宽温适应性、高精度稳定性与微型化设计,成为5G手机核心时钟源的理想选择&…

如何备份你的 Postman 所有 Collection?

团队合作需要、备份,还是迁移到其他平台,我们都需要在 Postman 中将这些珍贵的集合数据导出。 如何从 Postman 中导出所有集合(Collection)教程

MinGW下编译ffmpeg源码时生成compile_commands.json

在前面的博文MinGW下编译nginx源码中,有介绍到使用compiledb工具在MinGW环境中生成compile_commands.json,以为compiledb是捕获的make时的输出,而nginx生成时控制台是有输出编译时的命令行信息的,笔者之前编译过ffmpeg的源码&…

【数据结构】树与森林

目录 树的存储方法 双亲表示法 孩子表示法 孩子兄弟表示法 树、森林与二叉树的转换 树转换成二叉树 森林转换成二叉树 二叉树转换成森林 树与森林的遍历 树的遍历 森林的遍历 树的存储方法 双亲表示法 这种存储结构采用一组连续空间来存储每个结点,同时…

跟着StatQuest学知识08-RNN与LSTM

一、RNN (一)简介 整个过程权重和偏置共享。 (二)梯度爆炸问题 在这个例子中w2大于1,会出现梯度爆炸问题。 当我们循环的次数越来越多的时候,这个巨大的数字会进入某些梯度,步长就会大幅增加&…

【SpringCloud】Eureka的使用

3. Eureka 3.1 Eureka 介绍 Eureka主要分为两个部分: EurekaServer: 作为注册中心Server端,向微服务应用程序提供服务注册,发现,健康检查等能力。 EurekaClient: 服务提供者,服务启动时,会向 EurekaS…

初识MySQL · 数据类型

目录 前言: 数值类型 文本、二进制数据类型 时间类型 String类型 前言: 对于MySQL来说,是一门编程语言,可能定义不是那么的严格,但是对于MySQL来说也是拥有自己的数据类型的,比如tinyint,…

QT图片轮播器(QT实操学习2)

1.项目架构 1.UI界面 2.widget.h​ #ifndef WIDGET_H #define WIDGET_H#include <QWidget>#define TIMEOUT 1 * 1000 QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent n…

深度解析衡石科技HENGSHI SENSE嵌入式分析能力:如何实现3天快速集成

嵌入式分析成为现代SaaS的核心竞争力 在当今SaaS市场竞争中&#xff0c;数据分析能力已成为产品差异化的关键因素。根据Bessemer Venture Partners的最新调研&#xff0c;拥有深度嵌入式分析功能的SaaS产品&#xff0c;其客户留存率比行业平均水平高出23%&#xff0c;ARR增长速…

杂草YOLO系列数据集4000张

一份开源数据集——杂草YOLO数据集&#xff0c;该数据集适用于农业智能化、植物识别等计算机视觉应用场景。 数据集详情 ​训练集&#xff1a;3,664张高清标注图像​测试集&#xff1a;180张多样性场景样本​验证集&#xff1a;359张严格筛选数据 下载链接 杂草YOLO数据集分…

Vue 2 探秘:visible 和 append-to-body 是谁的小秘密?

&#x1f680; Vue 2 探秘&#xff1a;visible 和 append-to-body 是谁的小秘密&#xff1f;&#x1f914; 父组件&#xff1a;identify-list.vue子组件&#xff1a;fake-clue-list.vue 嘿&#xff0c;各位前端探险家&#xff01;&#x1f44b; 今天我们要在 Vue 2 的代码丛林…

机器学习的一百个概念(1)单位归一化

前言 本文隶属于专栏《机器学习的一百个概念》&#xff0c;该专栏为笔者原创&#xff0c;引用请注明来源&#xff0c;不足和错误之处请在评论区帮忙指出&#xff0c;谢谢&#xff01; 本专栏目录结构和参考文献请见[《机器学习的一百个概念》 ima 知识库 知识库广场搜索&…

SpringCould微服务架构之Docker(5)

Docker的基本操作&#xff1a; 镜像相关命令&#xff1a; 1.镜像名称一般分两部分组成&#xff1a;[repository]:[tag]。 2. 在没有指定tag时&#xff0c;默认是latest&#xff0c;代表着最新版本的镜像。 镜像命令的案例&#xff1a; 镜像操作常用的命令&#xff1a; dock…

SpringAI与JBoltAI深度对比:从工具集到企业级AI开发范式的跃迁

一、Java生态下大模型开发的困境与需求 技术公司的能力断层 多数企业缺乏将Java与大模型结合的标准开发范式&#xff0c;停留在碎片化工具使用阶段。 大模型应用需要全生命周期管理能力&#xff0c;而不仅仅是API调用。 工具集的局限性 SpringAI作为工具集的定位&#xff1…

Python中multiprocessing的使用详解

1.实现多进程 代码实现&#xff1a; from multiprocessing import Process import datetime import timedef task01(name):current_timedatetime.datetime.now()start_timecurrent_time.strftime(%Y-%m-%d %H:%M:%S). "{:03d}".format(current_time.microsecond //…

强化学习与神经网络结合(以 DQN 展开)

目录 基于 PyTorch 实现简单 DQN double DQN dueling DQN Noisy DQN&#xff1a;通过噪声层实现探索&#xff0c;替代 ε- 贪心策略 Rainbow_DQN如何计算连续型的Actions 强化学习中&#xff0c;智能体&#xff08;Agent&#xff09;通过与环境交互学习最优策略。当状态空间或动…

飞书电子表格自建应用

背景 coze官方的插件不支持更多的飞书电子表格操作&#xff0c;因为需要自建应用 飞书创建文件夹 创建应用 开发者后台 - 飞书开放平台 添加机器人 添加权限 创建群 添加刚刚创建的机器人到群里 文件夹邀请群 创建好后&#xff0c;就可以拿到id和key 参考教程&#xff1a; 创…

深度学习四大核心架构:神经网络(NN)、卷积神经网络(CNN)、循环神经网络(RNN)与Transformer全概述

目录 &#x1f4c2; 深度学习四大核心架构 &#x1f330; 知识点概述 &#x1f9e0; 核心区别对比表 ⚡ 生活化案例理解 &#x1f511; 选型指南 &#x1f4c2; 深度学习四大核心架构 第一篇&#xff1a; 神经网络基础&#xff08;NN&#xff09; &#x1f330; 知识点概述…

MCP Server 实现一个 天气查询

​ Step1. 环境配置 安装 uv curl -LsSf https://astral.sh/uv/install.sh | shQuestion: 什么是 uv 呢和 conda 比有什么区别&#xff1f; Answer: 一个用 Rust 编写的超快速 (100x) Python 包管理器和环境管理工具&#xff0c;由 Astral 开发。定位为 pip 和 venv 的替代品…