Supplements of My Research Proposal: My Perspectives on the RAG

news2025/4/1 12:51:03

To build an agent, I think there’re a lot of things that can be considered from humans. For example, how do self-learners learn things?

I think 2 sources of knowledge can never be ignored: textbooks and online cources.

A question then arise: how do we know whether it is an excellent resource?

If agents can learn to weigh these materials like humans, agents can be a very quick learner! Yet, after that, they should also be able to extract knowledge from various high-quality resources. This idea is also similar to believability weighing.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2324365.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3实现router路由

说明: vue3实现router路由 效果图: step1:项目结构 src/ ├── views/ │ ├── Home.vue │ └── User.vue ├── router/ │ └── index.js ├── App.vue └── main.jsstep2:左边路由列表C:\Users\wangrusheng\PycharmProjects\un…

1500 字节 MTU | 溯源 / 技术权衡 / 应用影响

注:本文为 “MTU 字节” 相关文章合辑。 机翻,未校。 讨论部分,以提交人为分界。 单行只有阿拉伯数字的,为引文转译时对回复的点赞数。 How 1500 bytes became the MTU of the internet 1500 字节是如何成为互联网 MTU 的 Fe…

智能仪表板DevExpress Dashboard v24.2新版亮点:支持.NET 9

使用DevExpress BI Dashboard,再选择合适的UI元素(图表、数据透视表、数据卡、计量器、地图和网格),删除相应参数、值和序列的数据字段,就可以轻松地为执行主管和商业用户创建有洞察力、信息丰富的、跨平台和设备的决策…

【数据结构】二叉树的递归

数据结构系列三:二叉树(二) 一、递归的原理 1.全访问 2.主角 3.返回值 4.执等 二、递归的化关系思路 三、递归的方法设计 一、递归的原理 1.全访问 方法里调用方法自己,就会形成调用方法本身的一层一层全新相同的调用,方法的形参设置…

Intellij ider部署python项目教程

自己写了一个python项目【mac电脑】,然后用Intellij ider打开,配置python解释器,然后一运行,一直报错, If this fails your Python may not be configured for Tk ModuleNotFoundError: No module named _tkinter 各…

Linux进程状态补充(10)

文章目录 前言一、阻塞二、挂起三、运行R四、休眠D五、四个重要概念总结 前言 上篇内容大家看的云里雾里,这实在是正常不过,因为例如 写实拷贝 等一些概念的深层原理我还没有讲解,大家不用紧张,我们继续往下学习就行!&…

基于Python深度学习的鲨鱼识别分类系统

摘要:鲨鱼是海洋环境健康的指标,但受到过度捕捞和数据缺乏的挑战。传统的观察方法成本高昂且难以收集数据,特别是对于具有较大活动范围的物种。论文讨论了如何利用基于媒体的远程监测方法,结合机器学习和自动化技术,来…

EtherNet/IP转ProfiNet协议转换网关驱动西门子PLC与流量计的毫秒级压力同步控制

一、案例背景 汽车涂装线的静电喷涂工艺对压缩空气流量稳定性要求极高。原系统中Alicat流量计与西门子PLC因协议差异无法联动,导致涂料浪费率高达8%。通过JM-EIPM-PN网关实现供气系统与PLC的深度集成。从而实现了EtherNet/IP转ProfiNet的通讯。 二、设备连接与配置…

【力扣刷题|第十七天】0-1 背包 完全背包

目标和 力扣题目网址:目标和 这道题我们先用回溯的思想来做。首先我们设正数和为S,数组和为N,目标值为T,那么S-(N-S)T化简之后可以得S(TN)/2即选择的正数个数为偶数,而且NT也为偶数,那么第一个判断条件我们就有了&…

深度学习处理时间序列(3)

基于常识、不使用机器学习的基准 在开始使用像黑盒子一样的深度学习模型解决温度预测问题之前,我们先尝试一种基于常识的简单方法。它可以作为一种合理性检查,还可以建立一个基准,更高级的机器学习模型需要超越这个基准才能证明其有效性。对…

VectorBT:使用PyTorch+LSTM训练和回测股票模型 进阶二

VectorBT:使用PyTorchLSTM训练和回测股票模型 进阶二 本方案基于LSTM神经网络构建多时间尺度股票收益率预测模型,结合VectorBT进行策略回测。核心原理是通过不同时间窗口(5/10/20/30日)捕捉股价的短期、中期、长期模式&#xff0c…

蓝桥杯 第十二天 819 递增序列

注意注意&#xff1a;不考虑左上的情况&#xff0c;因为题目给的样例没有 public static int is1(char ch[][],int m,int n){int ans0;for (int i0;i<m;i){//起始点在哪for (int j0;j<n;j){int add1;while(jadd<n){if(ch[i][j]<ch[i][jadd]) ans; //横add;}add1…

【YOLOv11】目标检测任务-实操过程

目录 一、torch环境安装1.1 创建虚拟环境1.2 启动虚拟环境1.3 安装pytorch1.4 验证cuda是否可用 二、yolo模型推理2.1 下载yolo模型2.2 创建模型推理文件2.3 推理结果保存路径 三、labelimg数据标注3.1 安装labelimg3.2 解决浮点数报错3.3 labelimg UI界面介绍3.4 数据标注案例…

C++_STL之vector篇

一、vector的常见用法 注&#xff1a;C中若使用vector需包含头文件<vector>. 1.vector的构造函数 int n 10,ret1;vector<int> nums(n,ret); //n表示vector初始的容量 ret表示vector中初始化的值for (auto e : nums)cout << e << " "; 扩展…

sqli-labs靶场 less 9

文章目录 sqli-labs靶场less 9 时间盲注 sqli-labs靶场 每道题都从以下模板讲解&#xff0c;并且每个步骤都有图片&#xff0c;清晰明了&#xff0c;便于复盘。 sql注入的基本步骤 注入点注入类型 字符型&#xff1a;判断闭合方式 &#xff08;‘、"、’、“”&#xf…

【Golang】第八弹----面向对象编程

&#x1f525; 个人主页&#xff1a;星云爱编程 &#x1f525; 所属专栏&#xff1a;Golang &#x1f337;追光的人&#xff0c;终会万丈光芒 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 前言&#xff1a;Go语言面向对象编程说明 Golang也支持面向对…

java基础以及内存图

java基础 命名&#xff1a; 大驼峰&#xff1a;类名 小驼峰&#xff1a;变量名方法名等其他的 全部大写&#xff1a;常量名字.. // 单行注释 /**/ 多行注释 变量类型 变量名 一、基本类型&#xff08;8个&#xff09; 整数&#xff1a;byte-8bit short-16bit int 32-b…

【嵌入式学习3】TCP服务器客户端 - UDP发送端接收端

目录 1、TCP TCP特点 TCP三次握手&#xff08;建立TCP连接&#xff09;&#xff1a; TCP四次握手【TCP断开链接的时候需要经过4次确认】&#xff1a; TCP网络程序开发流程 客户端开发&#xff1a;用户设备上的程序 服务器开发&#xff1a;服务器设备上的程序 2、UDP 为…

Linux之基础知识

目录 一、环境准备 1.1、常规登录 1.2、免密登录 二、Linux基本指令 2.1、ls命令 2.2、pwd命令 2.3、cd命令 2.4、touch命令 2.5、mkdir命令 2.6、rmdir和rm命令 2.7man命令 2.8、cp命令 2.9、mv命令 2.10、cat命令 2.11、echo命令 2.11.1、Ctrl r 快捷键 2…

llamafactory微调效果与vllm部署效果不一致如何解决

在llamafactory框架训练好模型之后&#xff0c;自测chat时模型效果不错&#xff0c;但是部署到vllm模型上效果却很差 这实际上是因为llamafactory微调时与vllm部署时的对话模板不一致导致的。 对应的llamafactory的代码为 而vllm启动时会采用大模型自己本身设置的对话模板信息…