单纯形法之大M法

news2025/4/21 11:46:53

1. 问题背景与标准化

在求解某些线性规划问题时,往往难以直接找到初始的基本可行解。特别是当约束中存在等式或 “≥” 类型的不等式时,我们需要引入人工变量来构造一个初始可行解。

考虑如下标准形式问题(假设为最大化问题):

\begin{aligned} \text{Maximize } & Z = c^T x, \\ \text{Subject to } & Ax = b, \\ & x \ge 0. \end{aligned}

当约束中有“=”或“≥”约束时,为使模型满足“基本变量个数等于约束个数”的条件,我们引入人工变量 a≥0 。


2. 引入人工变量与大 M 惩罚

2.1. 人工变量的引入

  • 对于形如

    Ax = b

    的约束,如果直接采用松弛或剩余变量无法得到初始可行解,则引入人工变量 a≥0 ,使约束变为

    Ax + a = b..
  • 对于 “≥” 约束,同样引入剩余变量后再补充人工变量,保证约束满足等式形式。

2.2. 修改目标函数

为避免在最终解中保留人工变量,需在目标函数中给予这些变量一个巨大的惩罚。对于最大化问题,通常将人工变量前的系数设为 −M (其中 M 是一个非常大的正数),修改后的目标函数为:

\text{Maximize } Z = c^T x - M \sum_{i\in \mathcal{A}} a_i,

其中 \mathcal{A} 表示所有人工变量的集合。这样做的目的在于:

  • 若人工变量在最优解中不为零,则由于扣分 −M 其目标值会大幅降低,迫使求解过程中尽量消除人工变量;

  • 当存在一个可行解不需要使用人工变量时,最终解会将所有人工变量淘汰(即取零)。


3. 构造初始单纯型表

将原问题中所有变量(原决策变量、松弛/剩余变量、人工变量)统一构成向量,再构造单纯型表。设扩展后的变量记为

x' = (x, \, s, \, a)

目标函数写成:

相应的约束矩阵也经过扩充,使得原约束变为标准等式形式。

初始时,我们选取人工变量作为基本变量,从而构造一个初始基本可行解(注意:此解可能并非真实意义下的“可行解”,因为人工变量仅为辅助求解而引入)。


4. 大 M 法的单纯型迭代过程

4.1. 目标函数的重写

类似于普通单纯型法,我们把目标函数用基变量和非基变量表示。令 B 为当前基矩阵(其中包含人工变量),则基本解为

x_B = B^{-1}b.

目标函数可以写为

Z = c_B^T x_B + (c_N^T - c_B^T B^{-1}N)x_N.

其中:

  • c_B 中可能包含 −M 对应的人工变量;

  • 检验数(相对成本)为

    \overline{c_j} = c_j - c_B^T B^{-1}A_j.

4.2. 迭代与淘汰人工变量

在迭代过程中,由于目标函数中对人工变量赋予了极大负值 −M ,如果存在能使目标函数改善的换入操作,就会倾向于选择那些能使人工变量离开基的换入变量。单纯型法的迭代步骤与普通方法类似:

  • 进基变量选择:检查所有非基变量的检验数,若存在 \overline{c_j} > 0(对于最大化问题),则选择最有利的变量进基;

  • 出基变量选择:计算方向向量,利用最小比值法确定允许步长和出基变量。

关键在于:

  • 当存在一个完全可行的解(即一个解不需要使用人工变量)时,经过有限步迭代,所有人工变量将被淘汰(或其值收缩为零)。

  • 若最终得到的最优解中仍含有正值的人工变量,则表明原问题没有可行解。


5. 数学证明与思想总结

5.1. 惩罚机制确保解的“真实性”

由于引入了惩罚系数 M ,在目标函数中任何非零的人工变量都会使目标值大幅下降。设若在某一基本解中某个人工变量 a_i 保持正值,则对应目标函数贡献为 M\, a_i

  • 当 M 足够大时,任何含有非零人工变量的解都不是最优解;

  • 如果存在一个可行解(即不存在必须依赖人工变量)时,最优解必然使所有人工变量取零。

5.2. 终止与可行性判断

  • 终止条件:当所有非基变量的检验数都满足最优性条件时,算法终止。

  • 无可行解判断:若在最优解中发现有某个人工变量 a_i > 0,则说明原问题无可行解。

5.3. 收敛性与大 M 的选择

  • 理论上,M 应当取足够大,使得其影响在求解过程中远大于其他系数的作用,但实际计算中需避免因 M 过大而引起数值不稳定;

  • 大 M 法证明的核心在于:在有限次迭代内,若存在一个不依赖人工变量的可行解,则算法必然能将所有人工变量驱逐出基,并找到该最优解。


6. 总结

大 M 法的理论推导过程主要包括以下几个步骤:

  1. 问题标准化:将问题写为等式约束形式,必要时引入松弛、剩余和人工变量。

  2. 目标函数修改:在目标函数中对人工变量施加巨大的惩罚(对于最大化问题,人工变量前系数取 −M )。

  3. 构造初始单纯型表:以包含人工变量的基本可行解作为起始点。

  4. 单纯型迭代:按照单纯型法的标准步骤进行迭代,通过换基操作改善目标函数值,同时尽量淘汰人工变量。

  5. 终止与判断:若最终最优解中所有人工变量均为零,则得到原问题的最优解;反之,则原问题无可行解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2322015.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

各类神经网络学习:(四)RNN 循环神经网络(下集),pytorch 版的 RNN 代码编写

上一篇下一篇RNN(中集)待编写 代码详解 pytorch 官网主要有两个可调用的模块,分别是 nn.RNNCell 和 nn.RNN ,下面会进行详细讲解。 RNN 的同步多对多、多对一、一对多等等结构都是由这两个模块实现的,只需要将对输入…

DeepSeek 发布DeepSeek-V3-0324 版本 前端与网页开发能力、推理与多任务能力提升

DeepSeek 发布 DeepSeek-V3-0324 版本 DeepSeek 发布 DeepSeek-V3-0324 版本,在其前代模型 DeepSeek-V3 的基础上进行了显著升级。 该模型专注于中文和多语言文本生成、推理、代码编写等综合能力的提升,支持 Function Calling(函数调用&…

传输层安全协议 SSL/TLS 详细介绍

传输层安全性协议TLS及其前身安全套接层SSL是一种安全传输协议,目前TLS协议已成为互联网上保密通信的工业标准,在浏览器、邮箱、即时通信、VoIP等应用程序中得到广泛的应用。本文对SSL和TLS协议进行一个详细的介绍,以便于大家更直观的理解和认…

CentOS8 安装 Docker-CE

如果之前安装过docker,请先卸载旧版本: yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine 安装所需的软件包: yum install -y yum-utils 添加软件源信息(设置存储库)…

【Docker系列八】使用 Docker run 命令部署 Nginx

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

基于 PHP 内置类及函数的免杀 WebShell

前言 PHP 作为广泛使用的服务端语言,其灵活的内置类(如 DOMDocument)和文件操作机制(.ini、.inc 的自动加载),为攻击者提供了天然的隐蔽通道。通过 动态函数拼接、反射调用、加密混淆 和 伪命名空间 等手法…

鸿蒙移动应用开发--UI组件布局

实验要求: 制作一个B站视频卡片界面,大致如下图所示,要求应用到线性布局、层叠布局等相关课堂知识。背景图、logo及文本内容不限。 实验环境 :DevEco Studio 实验过程: 步骤1:创建项目 1. 在您的开发环境…

C++(16)—类和对象(下) ①再探构造函数

文章目录 一、构造函数初始化方式回顾二、初始化列表详解1. 初始化列表语法与特点2. 必须使用初始化列表的成员变量 三、初始化列表的底层机制四、最佳实践五、总结 一、构造函数初始化方式回顾 在C中,构造函数用于初始化对象的成员变量。传统的初始化方式是在构造…

投sci论文自己查重方法

首先进入查重网站科研者之家-Home of Reasearchers 会看到里面有很多小工具(比较高级的是要付费的) 我们找到论文查重的小工具:论文查重——>英文论文自助查重系统 把论文上传

宝塔docker flarum默认登录账号密码,crazymax/flarum镜像默认登录账号密码

docker flarum默认账号密码 刚创建完毕时的登录账号和密码都是flarum 来源说明 宝塔安装的这个1.8.5版本的docker flarum的版本是,用的是 Docker库 https://hub.docker.com/r/crazymax/flarum Github库 https://github.com/crazy-max/docker-flarum

电脑干货:万能驱动--EasyDrv8

目录 万能驱动EasyDrv8 功能介绍 主程序界面 驱动解压与安装 PE环境支持 系统部署环境 桌面环境一键解决方案 万能驱动8电脑版是由IT天空出品的一款智能识别电脑硬件并自动安装驱动的工具,一般又称为it天空万能驱动,万能驱动vip版,简称…

C++中将记录集的数据复制到Excel工作表中的CRange类CopyFromRecordset函数异常怎么捕获

文章目录 一、异常类型及捕获逻辑二、完整代码示例三、关键错误场景与解决方案1. CopyFromRecordset 返回空数据2. COM错误 0x800A03EC3. Excel进程残留4. 内存不足 四、调试与日志记录1. 启用详细日志2. 捕获错误描述3. 调试断点 五、最佳实践 在C中使用 CRange::CopyFromReco…

使用vector构造杨辉三角形

力扣118题: 给定一个非负整数 numRows,生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中,每个数是它左上方和右上方的数的和。 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2: 输入: numRows 1…

conda环境下解决gitk乱码模糊

关键词 conda、git、gitk、git gui、模糊、linux、乱码 现象 操作系统:ubuntu24.04 conda版本:25.1.1 正常的终端里gitk显示不会模糊 但是在conda创建的python虚拟环境中使用gitk,字体开始变得模糊不清 分析 根据deepseek的原因原因分析…

Contactile三轴触觉传感器:多维力感赋能机器人抓取

在非结构化环境中,机器人对物体的精准抓取与操作始终面临巨大挑战。传统传感器因无法全面感知触觉参数(如三维力、位移、摩擦),难以适应复杂多变的场景。Contactile推出的三轴触觉力传感器,通过仿生设计与创新光学技术…

远程登录服务(ssh)

一、远程登录服务概述 1. 概念 远程登录服务就像是一个神奇的桥梁,它让你能够跨越物理距离,通过网络连接到另一台计算机上进行操作。无论你身在何处,只要有网络连接,你就可以像坐在目标计算机前一样进行各种操作。 2. 功能 分享…

如何在阿里云linux主机上部署Node.Js

在阿里云的Linux服务器上搭建Node.js编程环境可以通过以下步骤完成。这里以常见的 Ubuntu/CentOS 系统为例,提供两种安装方式(包管理器、NVM多版本管理): 一、通过包管理器安装(适合快速安装指定版本) 1. …

VS Code连接远程服务遇到的问题

目录 一、VS Code链接远程服务 二、修改的文件不能保存 三、无法与 "Ip地址" 建立连接: 远程主机密钥已更改,端口转发已禁用. 四、解决远程连接后,每次断开让输入密码问题,实现免密登录 没有秘钥对,免密配置流程&a…

大模型训练 | 智能体知识库 资源收集之心理咨询问答数据集

最近我一直在研究AI大模型相关的内容,想着从现在开始慢慢收集各种各样的资源,万一以后需要训练大模型的时候可以用到,或者自己以后也许会需要。今天我想介绍一组“心理咨询问答数据集”产品,包含9414条心理咨询问答数据&#xff0…

AI Agent开发大全第十一课-超维空间里的语义翻译官:Embedding技术

一、Embedding:数字世界的"翻译官"与"导航仪" 1.1 从字符到向量的魔法 当我们输入"巧克力"三个字时,传统计算机只能识别ASCII码组成的符号序列,而Embedding技术就像给每个词语配备了"超维定位坐标"。通过深度学习模型,它将离散的…