TCP传输---计算机网络

news2025/3/26 20:46:10

TCP结构

在这里插入图片描述

  • 源端口和目标端口:标识通信的应用程序。
  • 序列号:标记发送的数据段的顺序序号。
  • 确认号 ( ACK):确认接收到的数据序号。
  • 标志位:控制连接状态,包括 SYN(同步)、ACK(确认)、FIN(结束)、RST(重置)等。
  • 窗口大小:表示接收方的缓冲区大小。

TCP三次握手

  1. 第一次握手:客户端发送 SYN
  • TCP头部变化:
    • 源端口 12345,目标端口 80
    • 序列号:随机初始为 1000
    • ACK:0,未确认对方数据
    • 标志位:SYN=1,其余为0,申请连接
    • 窗口大小:65535,本地缓冲区大小
  1. 第二次握手:服务器响应 SYN+ACK
  • TCP头部变化:
    • 源端口 80,目标端口 12345
    • 序列号:随机初始为 2000
    • ACK:1001,告诉对方下次希望接受的序列号
    • 标志位:SYN=1,ACK=1
    • 窗口大小:65535,本地缓冲区大小
  1. 第三次握手:客户端发送 ACK
  • TCP头部变化:
    • 源端口 12345,目标端口 80
    • 序列号:1001
    • ACK:2001,告诉对方下次希望接受的序列号
    • 标志位:ACK=1
    • 窗口大小:65535,本地缓冲区大小
    • 此时如果有数据可以发送数据
客户端                服务器
  | ---- SYN (SEQ=1000) ----> |
  | <--- SYN+ACK (SEQ=2000, ACK=1001) --- |
  | ---- ACK (SEQ=1001, ACK=2001) ----> |

为什么是三次握手

三次握手的核心目的是:客户端和服务器都确认对方的发送能力和自己的接收能力。

为什么两次不行?

1.客户端发送 SYN。
2.服务器发送 SYN+ACK,连接建立。
  • 如果第二次报文丢失,服务器认为连接已建立,但客户端仍在等待,导致连接不可用。
  • 如果网络中有延迟的旧 SYN 包到达服务器,服务器回复 SYN+ACK,但客户端没有第三次 ACK(因为不是新连接),服务器不会误建连接。

为什么不需要四次?

1.客户端 SYN。
2.服务器 ACK。
3.服务器 SYN。
4.客户端 ACK。

第二步和第三步可以合并为 SYN+ACK,没必要分开。

TCP四次挥手

  1. 第一次挥手:客户端发送 FIN
  • TCP 头部变化:
    • 源端口:12345,目标端口:80
    • 序列号:5000(假设当前序列号)
    • 确认号 (ACK):3000(假设已确认服务器的序列号)
    • 标志位:FIN=1, ACK=1
    • 窗口大小:0(不再接收数据)
  1. 第二次挥手:服务器发送 ACK
  • TCP 头部变化:
    • 源端口:80,目标端口:12345
    • 序列号 (SEQ):3000
    • 确认号 (ACK):5001(客户端 SEQ + 1)
    • 标志位:ACK=1
    • 窗口大小:65535
  1. 第三次挥手:服务器发送 FIN
  • TCP 头部变化:
    • 源端口:80,目标端口:12345
    • 序列号 (SEQ):3000
    • 确认号 (ACK):5001
    • 标志位:FIN=1, ACK=1
    • 窗口大小:0
  1. 第四次挥手:客户端发送 ACK
  • TCP 头部变化:
    • 源端口:12345,目标端口:80
    • 序列号 (SEQ):5001
    • 确认号 (ACK):3001(服务器 SEQ + 1)
    • 标志位:ACK=1
    • 窗口大小:65535
客户端                服务器
  | ---- FIN (SEQ=5000) ----> |
  | <--- ACK (ACK=5001) ------ |
  | <--- FIN (SEQ=3000) ------ |
  | ---- ACK (ACK=3001) ----> |

为什么四次挥手

TCP 是全双工协议,连接关闭时需要双方都确认:

  • 自己不再发送数据。
  • 已接收对方所有数据。

为什么三次不行?

1.客户端 FIN。
2.服务器 FIN+ACK(合并确认和关闭)。
3.客户端 ACK。
如果服务器还有数据未发完,合并 FIN+ACK 会导致数据丢失。

为什么四次挥手之后要等2MSL?

在四次挥手中,客户端发送的最后一次 ACK(第四次挥手)可能在网络中丢失。服务器重传 FIN,1MSL 覆盖重传 FIN 的时间,1MSL 覆盖 ACK 的传输时间

TCP传输可靠性保证

  • 前提:三次握手和四次挥手建立 可靠连接
  • 序列号和确认ACK保证有序不丢包
  • 超时重传:重新传送丢失的包
  • 流量控制和拥塞控制:一个保障接收端处理正常;一个控制网络当中的流量

拥塞控制-拥塞发送

在这里插入图片描述

拥塞控制-快恢复

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2321231.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于TweenMax和SVG的炫酷弹性进度条动画特效

这是一款效果非常炫酷的基于TweenMax和SVG的炫酷弹性进度条动画特效。该弹性进度条特效在点击触发按钮之后&#xff0c;按钮会变形为进度条&#xff0c;然后一个滑块在它上面滑动&#xff0c;就像重物滑过绳子的感觉&#xff0c;非常有创意。 在线演示 使用方法 该弹性进度条效…

python面试高频考点(深度学习大模型方向)

1. python中yeild和return的区别&#xff1f; 2. 介绍一下pytohn中的上下文管理器&#xff1f; 在Python中&#xff0c;上下文管理器&#xff08;Context Manager&#xff09; 是一种通过 with 语句管理资源的协议&#xff0c;确保资源&#xff08;如文件、数据库连接、线程锁…

六、重学C++—深入探索new delete

上一章节&#xff1a; 五、重学C—类(封装继承)-CSDN博客https://blog.csdn.net/weixin_36323170/article/details/146458436?spm1001.2014.3001.5502 本章节代码&#xff1a; cpp CuiQingCheng/cppstudy - 码云 - 开源中国https://gitee.com/cuiqingcheng/cppstudy/tree/m…

Unity代码热更新和资源热更新

知识点来源&#xff1a;人间自有韬哥在&#xff0c;hybridclr,豆包 目录 一、代码热更新1.代码热更新概述2.HybridCLR 二、资源热更新1.资源热更新概述2.AB包2.1.AB包的加载2.2.卸载AB包2.3.加载AB包依赖包2.4.获取MD52.5.生成对比文件2.6.更新AB包 3.Addressable3.1.AssetRef…

于纷扰中寻静谧:正念观照的智慧之旅

在现代社会的快节奏浪潮中&#xff0c;我们仿若被裹挟前行的浮萍&#xff0c;生活的压力与信息的洪流冲刷着内心的宁静&#xff0c;焦虑与迷茫如影随形。而正念观照&#xff0c;恰似一叶扁舟&#xff0c;能引领我们在心灵的海洋中回归自我&#xff0c;探寻那片澄澈之境。 正念…

环境评价分析中土地利用现状图的制作方法

在环境评价中&#xff0c;土地利用现状图是重要的基础图件&#xff0c;用于分析项目区域的土地利用类型、分布格局及其生态环境特征。 以下是制作土地利用现状图的详细步骤和方法&#xff1a; 一、前期准备工作 确定制图范围和比例尺 根据评价范围确定制图区域边界 常用比例…

编程题记录3

九宫幻方 题目链接&#xff1a;https://www.lanqiao.cn/problems/100/learning/?page1&first_category_id1&second_category_id3&tags%E7%9C%81%E8%B5%9B&tag_relationintersection 先旋转、镜像得到所有的情况&#xff0c;可以发现情况是可以暴力得出的。…

sql语句给表添加一个递增列

SSMS–》视图-》数据库(表)-》新建查询 ALTER TABLE [表名] DROP COLUMN ID ALTER TABLE [表名] ADD ID INT IDENTITY(1,1)执行完以上操作&#xff0c;会在表的最后一列添加一个自增字段 接下来如何把最后一个字段放到第一个字段呢&#xff1f; 假如sqlserver 表test 有以下…

vue java 实现大地图切片上传

文章目录 一、项目背景二、页面三、代码1.前端2.mock-i18n.js文件3.xx.js文件定义方法4.配置文件 application.properties5.后端方法 四、易错点易错点1&#xff1a;前端要进行分片切割&#xff0c;然后再分片上传。易错点2&#xff1a;后端配置文件要配置。易错点3&#xff1a…

langchain+ollama+deepseek的部署(win)

ANACONDA 安装 官网&#xff1a;Download Anaconda Distribution | Anaconda 配置系统环境 在系统变量中配置 检查是否配置成功 通过 cmd 窗口输入&#xff1a; conda info 如图&#xff1a;表示成功 配置你的虚拟环境 二、安装 ollama allama 安装 官网地址&#xff1a…

deepseek实战教程-第四篇开放平台接口文档使用

第二篇讲解了如何本地安装大模型&#xff0c;然后编写一个基于jsspringboot的项目&#xff0c;通过页面实现对话的功能。实际上&#xff0c;上面的demo用到是deepseek提供的接口&#xff0c;那么deepseek共提供了多少接口呢&#xff1f;这就要讨论到deepseek的接口库了&#xf…

一站式电脑工具箱,功能全面且实用

小明工具箱是一款集成了系统设置、维护工具、实用工具、图像处理等四大类工具的电脑工具箱&#xff0c;涵盖了上百种实用工具&#xff0c;能够满足用户在文件管理、文本处理、系统优化、图像处理等多方面的需求。 初次使用&#xff0c;需双击软件&#xff0c;便会自动将工具解压…

那些正常的动态规划

文章目录 前言动态规划到底是啥&#xff1f; 线性dp最长上升子序列子集和子序列和子串的区别内容分析 最大上升子序列例题1——[NOIP2004 提高组] 合唱队形分析 最长公共子序列最长公共子串 平面dp例题2——[NOIP2000 提高组] 方格取数分析 例题3——[NOIP2008 提高组] 传纸条分…

华为交换相关

端口模式 &#xff08;1&#xff09;access&#xff1a;只能属于单个VLAN&#xff0c;一般用于连接计算机端口 &#xff08;2&#xff09;trunk&#xff1a;端口允许多个VLAN通过&#xff0c;可以接收和发送多个VLAN报文&#xff0c;默认情况下只有管理VLAN不携带标签信息 &…

Chrome Performance 面板完全指南:从卡顿到丝滑的终极调试术

1.写在前面 前端性能调试是优化网页加载速度和运行效率的关键步骤&#xff0c;Chrome DevTools 的 Performance 面板 是核心工具; 2.Performance 面板使用步骤 ★ 基础 打开面板 在 Chrome 中按 F12 → 切换到 Performance 标签页。 开始录制 方式一&#xff1a;点击 ⚫️ 圆…

JDK 24:Java 24 中的新功能

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;历代文学&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编程&#xff0c;高并发设计&#xf…

ubuntu服务器server版安装,ssh远程连接xmanager管理,改ip网络连接。图文教程

ventoy启动服务器版iso镜像&#xff0c;注意看server名称&#xff0c;跟之前desktop版ubuntu不一样。没有gui界面。好&#xff0c;进入命令行界面。语言彻底没汉化了&#xff0c;选英文吧&#xff0c;别的更看不懂。 跟桌面版ubuntu类似&#xff0c;选择是否精简系统&#xff0…

python机器学习——新手入门学习笔记

一&#xff0c;概论 1.什么是机器学习 定义&#xff1a; 机器学习是从数据中自动分析获得模型&#xff0c;并利用模型对未知数据进行预测。 其实就是通过问题和数据&#xff0c;发现规律&#xff0c;并进行预测&#xff0c;与人脑相似。目的就是从历史数据当中获得规律&#x…

LabVIEW 与 PLC 通讯的常见方式

在工业自动化和数据采集系统中&#xff0c;PLC&#xff08;可编程逻辑控制器&#xff09; 广泛用于控制和监测各种设备&#xff0c;而 LabVIEW 作为强大的图形化编程工具&#xff0c;常用于上位机数据处理和可视化。为了实现 LabVIEW 与 PLC 的高效通讯&#xff0c;常见的方法包…

深度学习 Deep Learning 第9章 卷积网络 CNN

深度学习 Deep Learning 第9章 卷积网络 章节概述 本章深入探讨了卷积网络的原理、变体及其在深度学习中的应用。卷积网络通过卷积操作实现了参数共享和稀疏连接&#xff0c;显著提高了模型的效率和性能。本章首先介绍了卷积操作的基本形式及其在不同数据维度上的应用&#x…