MATLAB实现基于“蚁群算法”的AMR路径规划

news2025/3/26 6:00:18

目录

1 问题描述

2 算法理论

3 求解步骤

4 运行结果

5 代码部分

1 问题描述

       移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则 (如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务

2 算法理论

        蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。

        Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

        次年Dorigo 博士给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

        Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

        下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。

      蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时

  • 首先要将组合优化问题表达成与信息素相关的规范形式

  • 然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素

  • 这样的过程反复的进行即可求出组合优化问题的优化解。

归结蚁群算法有如下特点:

(1)分布式计算:

各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性;

(2)自组织性:

系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性;

(3)正反馈机制与负反馈机制结合:

若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,可以使得搜索范围扩大,这是蚁群算法中隐含的负反馈机制。

3 求解步骤

应用蚁群算法求解机器人路径优化问题的主要步骤如下:

(1)输入由0和1组成的矩阵表示机器人需要寻找最优路径的地图的地图,其中0表示此处可以通过的,1表示此处为障碍物。

上图的表示矩阵为:

                         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

                         0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

                         0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;

                         0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;

                         0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;

                         0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;

                         0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;

                         0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;

                         0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;

                         0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;

                         0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0;

                         0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0;

                         0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;

                         0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

(2)输入初始的信息素矩阵,选择初始点和终止点并且设置各种参数。在此次计算中,

我们设置所有位置的初始信息素相等。

(3)选择从初始点下一步可以到达的节点,根据每个节点的信息素求出前往每个节点的

概率,并利用轮盘算法选取下一步的初始点。

(4)更新路径,以及路程长度。

  (5) 重复(3)(4)过程,直到蚂蚁到达终点或者无路可走。

(6)重复(3)(4)(5),直到某一代m只蚂蚁迭代结束。

(7)更新信息素矩阵,其中没有到达的蚂蚁不计算在内。

(8)重复(3)-(7),直至n代蚂蚁迭代结束。

4 运行结果

将上述矩阵输入到程序中,画出最短路径的路线,并且输入每一轮迭代的最短路径,查看程序的收敛效果,在程序中设置plotif=1则输出收敛和最短路径图,在程序中设置plotif2=1则输出每一代蚂蚁的路径图。

最终输出的结果如图

路径规划图

对应收敛曲线图

5 代码部分

function m_main() 
G=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
   0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 
   0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0; 
   0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 
   0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 
   0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0; 
   0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0; 
   0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0; 
   0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0; 
   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;]; 
MM=size(G,1);      % G 地形图为01矩阵,如果为1表示障碍物 
Tau=ones(MM*MM,MM*MM);% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)
 Tau=8.*Tau; 
K=100;          % K 迭代次数(指蚂蚁出动多少波)
 M=50;         % M 蚂蚁个数(每一波蚂蚁有多少个)
 S=1 ;         % S 起始点(最短路径的起始点)
 E=MM*MM;         % E 终止点(最短路径的目的点)
 Alpha=1;    % Alpha 表征信息素重要程度的参数
 Beta=7;     % Beta 表征启发式因子重要程度的参数
 Rho=0.3 ;     % Rho 信息素蒸发系数
 Q=1;          % Q 信息素增加强度系数 
minkl=inf; 
mink=0; 
minl=0; 
 D=G2D(G); 
N=size(D,1);%N表示问题的规模(象素个数)
 a=1;%小方格象素的边长
 Ex=a*(mod(E,MM)-0.5);%终止点横坐标
 if Ex==-0.5 
Ex=MM-0.5; 
end 
Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标
 Eta=zeros(N);%启发式信息,取为至目标点的直线距离的倒数
 %下面构造启发式信息矩阵
 for i=1:N 
 ix=a*(mod(i,MM)-0.5); 
   if ix==-0.5 
   ix=MM-0.5; 
   end 
iy=a*(MM+0.5-ceil(i/MM));  
   if i~=E 
   Eta(i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5; 
   else 
   Eta(i)=100; 
   end 
end 
ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线
 PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度
 %% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- 
for k=1:K 
for m=1:M 
%% 第一步:状态初始化
 W=S;%当前节点初始化为起始点
 Path=S;%爬行路线初始化
PLkm=0;%爬行路线长度初始化
 TABUkm=ones(N);%禁忌表初始化
 TABUkm(S)=0;%已经在初始点了,因此要排除
 DD=D;%邻接矩阵初始化
 %% 第二步:下一步可以前往的节点
 DW=DD(W,:); 
DW1=find(DW); 
for j=1:length(DW1) 
   if TABUkm(DW1(j))==0 
      DW(DW1(j))=0; 
  end 
end 
LJD=find(DW); 
Len_LJD=length(LJD);%可选节点的个数
 %% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同
 while W~=E&&Len_LJD>=1 
%% 第三步:转轮赌法选择下一步怎么走
 PP=zeros(Len_LJD); 
  for i=1:Len_LJD 
    PP(i)=(Tau(W,LJD(i))^Alpha)*((Eta(LJD(i)))^Beta); 
  end 
sumpp=sum(PP); 
PP=PP/sumpp;%建立概率分布
Pcum(1)=PP(1); 
  for i=2:Len_LJD 
  Pcum(i)=Pcum(i-1)+PP(i); 
  end 
Select=find(Pcum>=rand); 
to_visit=LJD(Select(1)); 
%% 第四步:状态更新和记录
Path=[Path,to_visit];%路径增加
PLkm=PLkm+DD(W,to_visit);%路径长度增加
W=to_visit;%蚂蚁移到下一个节点
   for kk=1:N 
      if TABUkm(kk)==0 
      DD(W,kk)=0; 
      DD(kk,W)=0; 
      end 
   end 
TABUkm(W)=0;%已访问过的节点从禁忌表中删除
 DW=DD(W,:); 
DW1=find(DW); 
for j=1:length(DW1) 
    if TABUkm(DW1(j))==0 
       DW(j)=0; 
    end 
  end 
LJD=find(DW); 
Len_LJD=length(LJD);%可选节点的个数
 end 
%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度
 ROUTES{k,m}=Path; 
   if Path(end)==E 
      PL(k,m)=PLkm; 
      if PLkm<minkl 
          mink=k;minl=m;minkl=PLkm; 
      end 
   else 
      PL(k,m)=0; 
   end 
end 
%% 第六步:更新信息素
Delta_Tau=zeros(N,N);%更新量初始化
   for m=1:M 
     if PL(k,m)  
        ROUT=ROUTES{k,m}; 
        TS=length(ROUT)-1;%跳数
         PL_km=PL(k,m); 
        for s=1:TS 
          x=ROUT(s); 
          y=ROUT(s+1); 
          Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km; 
          Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km; 
        end 
     end 
  end 
Tau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分
 end 
%% ---------------------------绘图-------------------------------- 
plotif=1;%是否绘图的控制参数
 if plotif==1 %绘收敛曲线
    minPL=zeros(K); 
   for i=1:K 
     PLK=PL(i,:); 
     Nonzero=find(PLK); 
     PLKPLK=PLK(Nonzero); 
     minPL(i)=min(PLKPLK); 
   end 
figure(1) 
plot(minPL); 
hold on 
grid on 
title('收敛曲线(最小路径长度)'); 
xlabel('迭代次数'); 
ylabel('路径长度'); %绘爬行图
figure(2) 
axis([0,MM,0,MM]) 
for i=1:MM 
for j=1:MM 
if G(i,j)==1 
x1=j-1;y1=MM-i; 
x2=j;y2=MM-i; 
x3=j;y3=MM-i+1; 
x4=j-1;y4=MM-i+1; 
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); 
hold on 
else 
x1=j-1;y1=MM-i; 
x2=j;y2=MM-i; 
x3=j;y3=MM-i+1; 
x4=j-1;y4=MM-i+1; 
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); 
hold on 
end 
end 
end 
hold on 
ROUT=ROUTES{mink,minl}; 
LENROUT=length(ROUT); 
Rx=ROUT; 
Ry=ROUT; 
for ii=1:LENROUT 
Rx(ii)=a*(mod(ROUT(ii),MM)-0.5); 
if Rx(ii)==-0.5 
Rx(ii)=MM-0.5; 
end 
Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); 
end 
plot(Rx,Ry) 
end 
plotif2=0;%绘各代蚂蚁爬行图
if plotif2==1 
figure(3) 
axis([0,MM,0,MM]) 
for i=1:MM 
for j=1:MM 
if G(i,j)==1 
x1=j-1;y1=MM-i; 
x2=j;y2=MM-i; 
x3=j;y3=MM-i+1; 
x4=j-1;y4=MM-i+1; 
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); 
hold on 
else 
x1=j-1;y1=MM-i; 
x2=j;y2=MM-i; 
x3=j;y3=MM-i+1; 
x4=j-1;y4=MM-i+1; 
fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); 
hold on 
end 
end 
end 
for k=1:K 
PLK=PL(k,:); 
minPLK=min(PLK); 
pos=find(PLK==minPLK); 
m=pos(1); 
ROUT=ROUTES{k,m}; 
LENROUT=length(ROUT); 
Rx=ROUT; 
Ry=ROUT; 
for ii=1:LENROUT 
Rx(ii)=a*(mod(ROUT(ii),MM)-0.5); 
if Rx(ii)==-0.5 
Rx(ii)=MM-0.5; 
end 
Ry(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); 
end 
plot(Rx,Ry) 
hold on 
end 
end 
function D=G2D(G) 
l=size(G,1); 
D=zeros(l*l,l*l); 
for i=1:l 
    for j=1:l 
        if G(i,j)==0 
            for m=1:l 
                for n=1:l 
                    if G(m,n)==0 
                        im=abs(i-m);jn=abs(j-n); 
                        if im+jn==1||(im==1&&jn==1) 
                        D((i-1)*l+j,(m-1)*l+n)=(im+jn)^0.5; 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
                         

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2320790.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【深度学习】多目标融合算法(五):定制门控网络CGC(Customized Gate Control)

目录 一、引言 二、CGC&#xff08;Customized Gate Control&#xff0c;定制门控网络&#xff09; 2.1 技术原理 2.2 技术优缺点 2.3 业务代码实践 2.3.1 业务场景与建模 2.3.2 模型代码实现 2.3.3 模型训练与推理测试 2.3.4 打印模型结构 三、总结 一、引言 上一…

【NLP 42、实践 ⑪ 用Bert模型结构实现自回归语言模型的训练】

如果结局早已注定&#xff0c;那么过程就将大于结局 —— 25.3.18 自回归语言模型&#xff1a;由前文预测后文的语言模型 特点&#xff1a;单向 训练方式&#xff1a;利用前n个字预测第n1个字&#xff0c;实现一个mask矩阵&#xff0c;送入Bert模型&#xff0c;让其前文看不到…

TCP | 序列号和确认号 [逐包分析] | seq / ack 详解

注 &#xff1a; 本文为 “TCP 序号&#xff08;seq&#xff09;与确认序号&#xff08;ack&#xff09;” 相关文章合辑。 英文引文&#xff0c;机翻未校。 中文引文&#xff0c;略作重排。 如有内容异常&#xff0c;请看原文。 Understanding TCP Seq & Ack Numbers […

在Linux、Windows系统上安装开源InfluxDB——InfluxDB OSS v2并设置开机自启的保姆级图文教程

一、进入InfluxDB下载官网 InfluxData 文档https://docs.influxdata.com/Install InfluxDB OSS v2 | InfluxDB OSS v2 Documentation

考研复习之队列

循环队列 队列为满的条件 队列为满的条件需要特殊处理&#xff0c;因为当队列满时&#xff0c;队尾指针的下一个位置应该是队头指针。但是&#xff0c;我们不能直接比较 rear 1 和 front 是否相等&#xff0c;因为 rear 1 可能会超出数组索引的范围。因此&#xff0c;我们需…

智慧高速,安全护航:视频监控平台助力高速公路高效运营

随着我国高速公路里程的不断增长&#xff0c;交通安全和运营效率面临着前所未有的挑战。传统的监控方式已难以满足现代化高速公路管理的需求&#xff0c;而监控视频平台的出现&#xff0c;则为高速公路的安全运营提供了强有力的技术支撑。高速公路视频监控联网解决方案 高速公路…

Jboss漏洞再现

一、CVE-2015-7501 1、开环境 2、访问地址 / invoker/JMXInvokerServlet 出现了让下载的页面&#xff0c;说明有漏洞 3、下载ysoserial工具进行漏洞利用 4、在cmd运行 看到可以成功运行&#xff0c;接下来去base64编码我们反弹shell的命令 5、执行命令 java -jar ysoserial-…

【Linux系统】Linux权限讲解!!!超详细!!!

目录 Linux文件类型 区分方法 文件类型 Linux用户 用户创建与删除 用户之间的转换 su指令 普通用户->超级用户(root) 超级用户(root) ->普通用户 普通账户->普通账户 普通用户的权限提高 sudo指令 注&#xff1a; Linux权限 定义 权限操作 1、修改文…

2.创建Collection、添加索引、加载内存、预览和搜索数据

milvus官方文档 milvus2.3.1的官方文档地址: https://milvus.io/docs/v2.3.x 使用attu创建collection collection必须要有一个主键字段、向量字段 确保字段类型与索引类型兼容 字符串类型&#xff08;VARCHAR&#xff09;通常需要使用 Trie 索引&#xff0c;而不是 AutoInd…

AIGC 新势力:探秘海螺 AI 与蓝耘 MaaS 平台的协同创新之旅

探秘海螺AI&#xff1a;多模态架构下的认知智能新引擎 在人工智能持续进阶的进程中&#xff0c;海螺AI作为一款前沿的多功能AI工具&#xff0c;正凭借其独特的多模态架构崭露头角。它由上海稀宇科技有限公司&#xff08;MiniMax&#xff09;精心打造&#xff0c;依托自研的万亿…

一文解读DeepSeek在法律商业仲裁细分行业的应用

引言 当AI闯入法律界&#xff1a;DeepSeek如何把商业仲裁变成“纠纷快车道” AI技术正在像水电煤一样渗透生活&#xff0c;随着DeepSeek的爆火出圈&#xff0c;全国各行各业都在如火如荼地接入DeepSeek&#xff0c;以期望利用DeepSeek的“超能力”来重塑各自行业的效能和格局&a…

快速入手-基于Django的主子表间操作mysql(五)

1、如果该表中存在外键&#xff0c;结合实际业务情况&#xff0c;那可以这么写&#xff1a; 2、针对特殊的字典类型&#xff0c;可以这么定义 3、获取元组中的字典值和子表中的value值方法 4、对应的前端页面写法

HTTPS协议—加密算法和中间攻击人的博弈

活动发起人小虚竹 想对你说&#xff1a; 这是一个以写作博客为目的的创作活动&#xff0c;旨在鼓励大学生博主们挖掘自己的创作潜能&#xff0c;展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴&#xff0c;那么&#xff0c;快来参加吧&#xff01…

【大模型理论篇】CogVLM:多模态预训练语言模型

1. 模型背景 前两天我们在《Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought》中介绍了将ViT与推理模型结合构造多模态推理模型的案例&#xff0c;其中提到了VLM的应用。追溯起来就是两篇前期工作&#xff1a;Vision LLM以及CogVLM。 今天准备回顾一下Cog…

AI知识补全(一):tokens是什么?

名人说&#xff1a;苔花如米小&#xff0c;也学牡丹开。——袁枚《苔》 创作者&#xff1a;Code_流苏(CSDN)&#xff08;一个喜欢古诗词和编程的Coder&#x1f60a;&#xff09; 目录 一、什么是Tokens&#xff1f;二、为什么Tokens如此重要&#xff1f;1.模型的输入输出限制2.…

【LC插件开发】基于Java实现FSRS(自由间隔重复调度算法)

&#x1f60a;你好&#xff0c;我是小航&#xff0c;一个正在变秃、变强的文艺倾年。 &#x1f514;本文讲解【LC插件开发】基于Java实现FSRS&#xff08;自由间隔重复调度算法&#xff09;&#xff0c;期待与你一同探索、学习、进步&#xff0c;一起卷起来叭&#xff01; 目录…

AI比人脑更强,因为被植入思维模型【17】万物联系思维模型

万物联系,万物,并不孤立。 定义 万物联系思维模型是一种强调世界上所有事物都相互关联、相互影响的思维方式。它认为任何事物都不是孤立存在的,而是与周围的环境、其他事物以及整个宇宙构成一个有机的整体。这种联系不仅包括直接的因果关系,还涵盖了间接的、潜在的、动态的…

【MySQL篇】复合查询

目录 前言&#xff1a; 1&#xff0c;多表查询 2&#xff0c;自连接 3&#xff0c;子查询 3.1&#xff0c;单行子查询 3.2&#xff0c;多行子查询 3.3&#xff0c;多列子查询 3.3&#xff0c;在from子句中使用子查询 4&#xff0c;合并查询 4.1&#xff0c;union …

unsloth微调QwQ32B(4bit)

unsloth微调QwQ32B(4bit) GPU: 3090 24G unsloth安装部署 pip 安装 pip install unsloth --index https://pypi.mirrors.usrc.edu.cn/simplesource /etc/network_turbopip install --force-reinstall --no-cache-dir --no-deps githttps://github.com/unslothai/unsloth.git​…

基于腾讯云大模型知识引擎×DeepSeek的高等职业学校单独招生二级学院考前咨询系统

1、主要思路 通过大模型知识引擎DeepSeek搭建高等职业学校单独招生二级学院考前咨询专有问答&#xff0c;使得专业老师能够更好的服务考试学生&#xff0c;有利于二级学院能够更好的进行考试宣传&#xff0c;招来优秀学子&#xff01; 2、创作过程 2.1、本地部署大模型的缺陷…