一种基于大规模语言模型LLM的数据分析洞察生成方法

news2025/3/20 7:57:38

从复杂数据库中提取洞察对数据驱动决策至关重要,但传统手动生成洞察的方式耗时耗力,现有自动化数据分析方法生成的洞察不如人工生成的有洞察力,且存在适用场景受限等问题。下文将介绍一种新的方法,通过生成高层次问题和子问题,并使用SQL查询和LLM总结生成多表数据库中的见解。实验结果表明,该方法在见解的有洞察力和正确性方面优于现有方法。

1. 核心思想与创新点

《An LLM-Based Approach for Insight Generation in Data Analysis》提出了一种基于LLM的三阶段框架(假设生成→查询代理→总结模块),通过自动化流程从多表数据库中生成高质量文本洞察。其核心创新体现在:

  • 分层问题生成机制:通过高/低层级问题分解,突破LLM的上下文限制。高层问题探索宏观模式,低层问题聚焦可验证的原子操作。
  • 混合验证体系:结合SQL查询验证(客观正确性)与基于Elo评分的主观洞察力评估,构建双维度质量保障。
  • 动态迭代优化:在总结阶段引入反射机制,通过多轮LLM自检修正信息偏差,抑制幻觉生成。

2. 技术架构详解

在这里插入图片描述

2.1 假设生成器(Hypothesis Generator)

  • 层级分解策略

    • 高层生成器(HL-G)接收精简版数据库描述,生成领域相关宏观问题(如"不同社会经济群体学业表现趋势")
    • 低层生成器(LL-G)结合完整schema,将宏观问题分解为可SQL化的子问题(如"特许学校FRPM比例与SAT分数的相关性")
  • Prompt设计要点

    # 高层生成示例Prompt
    """
    基于{精简数据库描述},生成10个零售客户数据分析方向的高层问题,
    需体现业务行动导向,避免纯统计描述
    """
    
    # 低层分解示例Prompt 
    """
    针对{宏观问题},结合{schema详情}生成5个可并行执行的子问题,
    需明确聚合方式(sum/avg)及关键字段
    """
    

2.2 查询代理(Query Agent)

  • SQL生成优化
    • 采用LangGraph SQL Agent实现动态查询规划
    • 查询代理是论文中用于生成SQL查询的组件。它的主要目标是生成能够回答子问题的SQL查询,并最小化生成的查询与真实查询之间的差异。
  • 生成SQL查询:查询代理根据子问题的内容,生成相应的SQL查询。这个查询是针对数据库中的特定表和字段进行的,旨在获取回答子问题所需的数据。
  • 最小化差异:查询代理的目标是最小化生成的查询与真实查询之间的差异。具体来说,它通过定义一个距离函数(如基于单元格精度和单元格召回率的调和平均数)来衡量查询结果之间的相似性,并尝试生成与真实查询结果最接近的查询。
    m i n d i s t ( q g e n ( D ) , q G T ( D ) ) \\min dist(q_{gen}(D),q_{GT}(D)) mindist(qgen(D),q

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2318237.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree】

npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree npm ERR! code ERESOLVE npm ERR! ERESOLVE unable to resolve dependency tree 当我们拿到一个前端项目的时候,想要把它运行起来,首先是要给它安装依赖,即cd到…

用 pytorch 从零开始创建大语言模型(四):从零开始实现一个用于生成文本的GPT模型

从零开始创建大语言模型(Python/pytorch )(四):从零开始实现一个用于生成文本的GPT模型 4 从零开始实现一个用于生成文本的GPT模型4.1 编写 L L M LLM LLM架构4.2 使用层归一化对激活值进行标准化4.3 使用GELU激活函数…

【新能源汽车“心脏”赋能:三电系统研发、测试与应用匹配的恒压恒流源技术秘籍】

新能源汽车“心脏”赋能:三电系统研发、测试与应用匹配的恒压恒流源技术秘籍 在新能源汽车蓬勃发展的浪潮中,三电系统(电池、电机、电控)无疑是其核心驱动力。而恒压源与恒流源,作为电源管理的关键要素,在…

目标检测20年(一)

今天看的文献是《Object Detection in 20 Years: A Survey》,非常经典的一篇目标检测文献,希望通过这篇文章学习到目标检测的基础方法并提供一些创新思想。 论文链接:1905.05055 一、摘要 1.1 原文 Object detection, as of one the most…

【MySQL数据库】存储过程与自定义函数(含: SQL变量、分支语句、循环语句 和 游标、异常处理 等内容)

存储过程:一组预编译的SQL语句和流程控制语句,被命名并存储在数据库中。存储过程可以用来封装复杂的数据库操作逻辑,并在需要时进行调用。 类似的操作还有:自定义函数、.sql文件导入。 我们先从熟悉的函数开始说起: …

WEB攻防-PHP反序列化-字符串逃逸

目录 前置知识 字符串逃逸-减少 字符串逃逸-增多 前置知识 1.PHP 在反序列化时,语法是以 ; 作为字段的分隔,以 } 作为结尾,在结束符}之后的任何内容不会影响反序列化的后的结果 class people{ public $namelili; public $age20; } var_du…

英伟达GTC 2025大会产品全景剖析与未来路线深度洞察分析

【完整版】3月19日,黄仁勋Nvidia GTC 2025 主题演讲|英伟达 英伟达GTC 2025大会产品全景剖析与未来路线深度洞察分析 一、引言 1.1 分析内容 本研究主要采用了文献研究法、数据分析以及专家观点引用相结合的方法。在文献研究方面,广泛收集了…

基于java的ssm+JSP+MYSQL的九宫格日志网站(含LW+PPT+源码+系统演示视频+安装说明)

系统功能 管理员功能模块: 个人中心 用户管理 日记信息管理 美食信息管理 景点信息管理 新闻推荐管理 日志展示管理 论坛管理 我的收藏管理 管理员管理 留言板管理 系统管理 用户功能模块: 个人中心 日记信息管理 美食信息管理 景点信息…

【Java】Mybatis学习笔记

目录 一.搭建Mybatis 二.Mybatis核心配置文件解析 1.environment标签 2.typeAliases 3.mappers 三.Mybatis获取参数值 四.Mybatis查询功能 五.特殊的SQL执行 1.模糊查询 2.批量删除 3.动态设置表名 4.添加功能获取自增的主键 六.自定义映射ResultMap 1.配置文件处…

遗传算法+四模型+双向网络!GA-CNN-BiLSTM-Attention系列四模型多变量时序预测

遗传算法四模型双向网络!GA-CNN-BiLSTM-Attention系列四模型多变量时序预测 目录 遗传算法四模型双向网络!GA-CNN-BiLSTM-Attention系列四模型多变量时序预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基于GA-CNN-BiLSTM-Attention、CNN-BiL…

中兴B860AV3.2-T/B860AV3.1-T2_S905L3-B_2+8G_安卓9.0_先线刷+后卡刷固件-完美修复反复重启瑕疵

中兴电信B860AV3.2-T/B860AV3.1-T2_晶晨S905L3-B芯片_28G_安卓9.0_先线刷后卡刷-刷机固件包,完美修复刷机后盒子反复重启的瑕疵。 这两款盒子是可以通刷的,最早这个固件之前论坛本人以及其他水友都有分享交流过不少的固件,大概都…

《Python实战进阶》No27: 日志管理:Logging 模块的最佳实践(下)

No27: 日志管理:Logging 模块的最佳实践(下) 实战案例 :复杂场景下的 Logging 配置与使用 本实战案例在 Python 3.11.5环境下运行通过 在本案例中,我们将通过一个复杂的日志配置示例,全面展示 logging 模…

Web 小项目: 网页版图书管理系统

目录 最终效果展示 代码 Gitee 地址 1. 引言 2. 留言板 [热身小练习] 2.1 准备工作 - 配置相关 2.2 创建留言表 2.3 创建 Java 类 2.4 定义 Mapper 接口 2.5 controller 2.6 service 3. 图书管理系统 3.1 准备工作 - 配置相关 3.2 创建数据库表 3.2.1 创建用户表…

【Dive Into Stable Diffusion v3.5】1:开源项目正式发布——深入探索SDv3.5模型全参/LoRA/RLHF训练

目录 1 引言2 项目简介3 快速上手3.1 下载代码3.2 环境配置3.3 项目结构3.4 下载模型与数据集3.5 运行指令3.6 核心参数说明3.6.1 通用参数3.6.2 优化器/学习率3.6.3 数据相关 4 结语 1 引言 在人工智能和机器学习领域,生成模型的应用越来越广泛。Stable Diffusion…

《Waf 火绒终端防护绕过实战:系统程序副本+Certutil木马下载技术详解》

目录 绕过火绒终端安全软件的详细方法 方法一:利用系统程序副本绕过命令监控 方法二:结合certutil.exe副本下载并执行上线木马 注意事项 总结 实际案例解决方案 前提条件 详细操作步骤 1. 攻击主机(VPS)上的准备工作 2.…

上海高考解析几何

解析几何的核心思想。 1. 核心分析方法: 自由度引入 方程组中, n n n 个未知数需要 n n n 个等式来解出具体的值。 自由度 性质 一个未知数带来一个自由度,一个等式条件减少一个自由度(减少自由度的方式为消元)。…

【AVRCP】服务发现互操作性:CT 与 TG 的 SDP 协议契约解析

目录 一、服务发现的核心目标:能力画像对齐 二、控制器(CT)服务记录:控制能力的声明 2.1 必选字段:角色与协议的刚性契约 2.1.1 服务类标识(Service Class ID List) 2.1.2 协议描述列表&am…

MySQL:数据库基础

数据库基础 1.什么是数据库?2.为什么要学习数据库?3.主流的数据库(了解)4.服务器,数据库,表之间的关系5.数据的逻辑存储6.MYSQL架构7.存储引擎 1.什么是数据库? 数据库(Database,简称DB)&#x…

深入 Linux 声卡驱动开发:核心问题与实战解析

1. 字符设备驱动如何为声卡提供操作接口? 问题背景 在 Linux 系统中,声卡被抽象为字符设备。如何通过代码让应用程序能够访问声卡的录音和播放功能? 核心答案 1.1 字符设备驱动的核心结构 Linux 字符设备驱动通过 file_operations 结构体定…

OpenNJet动态API设置accessLog开关,颠覆传统运维工作模式

OpenNJet OpenNJet 应用引擎是高性能、轻量级的WEB应用与代理软件。作为云原生服务网格的数据平面,NJet具备动态配置加载、主动式健康检测、集群高可用、声明式API等多种强大功能。通过CoPliot副驾驶服务框架,在隔离控制面和数据面的情况下实现了高可扩…