一、安装xinference
pip install xinference
二、启动xinference
./xinference-local --host=0.0.0.0 --port=5544
三、注册本地模型
1、注册embedding模型
curl -X POST "http://localhost:5544/v1/models" \
-H "Content-Type: application/json" \
-d '{
"model_type": "embedding",
"model_name": "bce-embedding-base_v1",
"model_uid": "bce-embedding-base_v1",
"model_path": "/root/embed_rerank/bce-embedding-base_v1/"
}'
验证:
curl -X POST "http://localhost:5544/v1/embeddings" \
-H "Content-Type: application/json" \
-d '{
"model": "bce-embedding-base_v1",
"input": ["需要嵌入的文本1", "这是第二个句子"]
}'
2、注册rerank模型
curl -X POST "http://localhost:5544/v1/models" \
-H "Content-Type: application/json" \
-d '{
"model_type": "rerank",
"model_name": "bce-reranker-base_v1",
"model_uid": "bce-reranker-base_v1",
"model_path": "/root/embed_rerank/bce-reranker-base_v1"
}'
验证
curl -X POST "http://localhost:5544/v1/rerank" \
-H "Content-Type: application/json" \
-d '{
"model": "bge-reranker-v2-m3",
"query": "What is Python?",
"documents": [
"Python is a programming language.",
"Java is another language.",
"Python is used for web development."
]
}'
3、执行./xinference list 查看运行模型
四、删除模型
curl -X DELETE "http://localhost:5544/v1/models/bge-reranker-v2-m3"
五、备注
1、在cpu运行
- 服务器有显卡但是选择用cpu加载
启动xinference之前设置
export CUDA_VISIBLE_DEVICES=""
- 服务器无显卡会自动在cpu加载模型
2、在gpu运行
启动服务器前设置环境变量
export CUDA_VISIBLE_DEVICES=""
curl -X POST "http://localhost:5544/v1/models" \
-H "Content-Type: application/json" \
-d '{
"model_type": "embedding",
"model_name": "bce-embedding-base_v1",
"model_uid": "bce-embedding-base_v1",
"model_path": "/root/zml/embed_rerank/bce-embedding-base_v1/"
"gpu_idx": 1
"n_gpu" : 1
}'
备注:
gpu_idx :选用的显卡index
n_gpu:选定的显卡总张数