browser-use WebUI
- 一、browser-use是什么
- Browser-use采用的技术栈为:
- 二、browser-use webui 主要功能
- 使用场景
- 三、使用教程
- 1.python 安装
- 2、把项目clone下来
- 3、安装依赖
- 4、配置环境
- 5、启动
- 6、配置
- 1.配置 Agent
- 2.配置要用的大模型
- 3.关于浏览器的一些设置
- 四、DeepSeek 的API获取
- 五、界面Demo 演示
- 六、代码示例
- 1.创建Agent
- 七、实例展示
- 一、爬取基金数据
- 二、效果展示
- 1、导航到指定网址
- 2、点击基金排行
- 3、提取top 10的基金数据
- 三、总结
一、browser-use是什么
Browser Use 是一款开源Python库,专为大语言模型设计的智能浏览器工具,目的是让 AI 能够像人类一样自然地浏览和操作网页。它支持多标签页管理、视觉识别、内容提取,并能记录和重复执行特定动作。Browser Use 还支持开发者自定义动作,如保存数据到数据库,文件等。支持多种主流的大型语言模型,如 DeepSeek,GPT-4 和 Claude等,并支持同时运行多个任务,具备自我修正功能,从而提高任务执行的准确性和效率。
官网:https://browser-use.com/
项目网址 :https://github.com/browser-use/browser-use
Browser-use采用的技术栈为:
- 1、Observation:页面解析层,采用DOM解析+截图辅助的非视觉+视觉方案。
- DOM解析(HTML + XPath):Browser-use通过底层框架(如Playwright)获取当前页面的完整HTML结构,并提取文本、元素属性等关键信息。
- 截图辅助:在某些情况下(如验证码识别、动态图形验证),纯HTML解析可能无法直接获取信息,此时系统会自动或按需生成页面截图,并将截图作为辅助输入传递给视觉模型
- 2、Thought:核心决策层,分析Observation提供的页面信息并生成操作指令。
- 3、Action:指令执行层,微软开发的Playwright作为浏览器控制框架直接与浏览器交互完成自动化任务。Playwright作为新一代高性能UI自动化测试框架,提供低延迟、高稳定性的浏览器控制能力,支持快速页面加载和元素操作。
二、browser-use webui 主要功能
提供了全新的网页界面,简单好用,方便操作。
支持更多大语言模型,比如 Gemini、OpenAI、Azure 等,哦,还有最近爆火的国产大模型 DeepSeek,未来还会加更多。
支持用自己的浏览器,不用再反复登录,还能录屏。
定制了更智能的 Agent,通过优化后的提示让浏览器使用更高效。
使用场景
- 自动化任务:适合重复高频的浏览器操作任务,如表单填写,信息检索,文件下载
- 数据收集:适合爬取网络上的数据,如爬虫自动化测试:适合WEB UI
- 自动化测试,结合pytest轻松实现web自动化
三、使用教程
1.python 安装
python 官网: https://www.python.org/downloads/
版本必须在 3.11 以上。
2、把项目clone下来
git clone https://github.com/browser-use/web-ui.git
cd web-ui
3、安装依赖
pip install browser-use
playwright install
pip install -r requirements.txt
4、配置环境
基于 .env.example 复制一个 .env 文件,并在 .env 文件中修改以下信息
# 路径 Chrome 浏览器路径(检查下自己的路径),例如
# Mac OS "/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
# Windows "C:\Program Files\Google\Chrome\Application\chrome.exe"
CHROME_PATH="/Applications/Google Chrome.app/Contents/MacOS/Google Chrome"
# 浏览器的用户数据路径,例如
# Mac OS "/Users/<YourUsername>/Library/Application Support/Google/Chrome"
# Windows "C:\Users\<YourUsername>\AppData\Local\Google\Chrome\User Data"
CHROME_USER_DATA="/Users/<YourUsername>/Library/Application Support/Google/Chrome"
# 还有一些大模型的 API Key 也要改
...
5、启动
执行如下命令启动
python webui.py --ip 127.0.0.1 --port 7788
启动成功如下所示:
浏览器访问 http://127.0.0.1:7788/,看到如下界面就成功了
6、配置
1.配置 Agent
注意,这里的 Use Vision,默认是选中状态,如果使用的 DeepSeek 不能勾选,因为 DeepSeek 不支持视觉输入,注意这里很多人踩坑,一定要注意。
2.配置要用的大模型
例如,下面我用的是 deepseek。
3.关于浏览器的一些设置
四、DeepSeek 的API获取
DeepSeek :https://platform.deepseek.com/api_keys
五、界面Demo 演示
输入要执行的任务就可以点击 Run Agent 了
以下是运行时的项目日志输出,记录了执行步骤
执行的过程中也会打开浏览器和跳转到目标网站,按照区块一样对页面元素做标注。
在 Recodings 下会记录执行过程和反馈结果,还可以回看的。
六、代码示例
1.创建Agent
from langchain_openai import ChatOpenAI
from browser_use import Agent
import asyncio
async def main():
agent = Agent(
task="Go to Reddit, search for 'browser-use' in the search bar, click on the first post and return the first comment.",
llm=ChatOpenAI(model="gpt-4o"),
)
result = await agent.run()
print(result)
asyncio.run(main())
如果没有openai-key的可以使用其他模型,下面以DeepSeek为例:
该文件在 browser-use/examples/deepseek.py
import asyncio
import os
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from pydantic import SecretStr
from browser_use import Agent
# dotenv
load_dotenv()
api_key = os.getenv('DEEPSEEK_API_KEY', 'sk-xxxxxx')
if not api_key:
raise ValueError('DEEPSEEK_API_KEY is not set')
async def run_search():
agent = Agent(
task=(
"1. 在搜索框中输入抖音并搜索"
'2. 点击搜索结果中的第一个链接'
'3. 关闭扫码登录'
'3. 返回第一个视频的内容'
),
llm=ChatOpenAI(
base_url='https://api.deepseek.com/v1',
model='deepseek-chat',
api_key=SecretStr(api_key),
),
use_vision=False,
)
await agent.run()
if __name__ == '__main__':
asyncio.run(run_search())
运行结果如下:
七、实例展示
一、爬取基金数据
llm = ChatOpenAI(
model='deepseek-chat',
api_key='*************',
base_url='https://api.deepseek.com',
temperature=0
)
asyncdefmain():
agent = Agent(
task="""
1、导航到网址:https://fund.eastmoney.com/
2、点击基金排行
3、返回排行前10的基金数据,以json格式返回
""",
llm=llm,
use_vision=False,
)
result = await agent.run()
print(result.final_result())
asyncio.run(main())
二、效果展示
1、导航到指定网址
2、点击基金排行
3、提取top 10的基金数据
DEBUG [browser_use] --act Execution time: 0.00 seconds
INFO [controller] 📄 Extracted from page
: ```json
{
"top_10_funds": [
{
"rank": 1,
"fund_code": "018124",
"fund_name": "永赢先进制造智选混合发起A",
"date": "03-07",
"unit_net_value": "2.1654",
"cumulative_net_value": "2.1654",
"daily_growth_rate": "2.21%",
"1_week": "9.15%",
"1_month": "17.58%",
"3_months": "64.06%",
"6_months": "191.13%",
"1_year": "115.94%",
"since_inception": "116.54%",
"handling_fee": "0.15%"
},
{
"rank": 2,
"fund_code": "018125",
"fund_name": "永赢先进制造智选混合发起C",
"date": "03-07",
"unit_net_value": "2.1501",
"cumulative_net_value": "2.1501",
"daily_growth_rate": "2.21%",
"1_week": "9.15%",
"1_month": "17.54%",
"3_months": "63.89%",
"6_months": "190.55%",
"1_year": "115.07%",
"since_inception": "115.01%",
"handling_fee": "0.00%"
},
{
"rank": 3,
"fund_code": "016530",
"fund_name": "鹏华碳中和主题混合A",
"date": "03-07",
"unit_net_value": "1.7881",
"cumulative_net_value": "1.7881",
"daily_growth_rate": "3.00%",
"1_week": "10.23%",
"1_month": "22.92%",
"3_months": "68.07%",
"6_months": "178.39%",
"1_year": "104.00%",
"since_inception": "78.81%",
"handling_fee": "0.15%"
},
{
"rank": 4,
"fund_code": "016531",
"fund_name": "鹏华碳中和主题混合C",
"date": "03-07",
"unit_net_value": "1.7685",
"cumulative_net_value": "1.7685",
"daily_growth_rate": "3.00%",
"1_week": "10.21%",
"1_month": "22.86%",
"3_months": "67.81%",
"6_months": "177.59%",
"1_year": "102.79%",
"since_inception": "76.85%",
"handling_fee": "0.00%"
},
{
"rank": 5,
"fund_code": "001970",
"fund_name": "泰信鑫选灵活配置混合A",
"date": "03-07",
"unit_net_value": "1.3310",
"cumulative_net_value": "1.3310",
"daily_growth_rate": "-1.04%",
"1_week": "7.25%",
"1_month": "4.80%",
"3_months": "31.00%",
"6_months": "125.59%",
"1_year": "95.45%",
"since_inception": "33.10%",
"handling_fee": "0.15%"
},
{
"rank": 6,
"fund_code": "002580",
"fund_name": "泰信鑫选灵活配置混合C",
"date": "03-07",
"unit_net_value": "1.3220",
"cumulative_net_value": "1.3220",
"daily_growth_rate": "-0.97%",
"1_week": "7.31%",
"1_month": "4.84%",
"3_months": "31.15%",
"6_months": "125.60%",
"1_year": "95.27%",
"since_inception": "31.67%",
"handling_fee": "0.00%"
},
{
"rank": 7,
"fund_code": "016295",
"fund_name": "新华利率债债券E",
"date": "03-07",
"unit_net_value": "1.7977",
"cumulative_net_value": "1.9906",
"daily_growth_rate": "-0.13%",
"1_week": "-0.06%",
"1_month": "-0.66%",
"3_months": "0.85%",
"6_months": "94.13%",
"1_year": "92.89%",
"since_inception": "99.00%",
"handling_fee": "0.00%"
},
{
"rank": 8,
"fund_code": "019457",
"fund_name": "平安先进制造主题股票发起A",
"date": "03-07",
"unit_net_value": "1.7593",
"cumulative_net_value": "1.7593",
"daily_growth_rate": "1.78%",
"1_week": "10.41%",
"1_month": "23.92%",
"3_months": "57.40%",
"6_months": "134.29%",
"1_year": "90.71%",
"since_inception": "75.93%",
"handling_fee": "0.15%"
},
{
"rank": 9,
"fund_code": "019458",
"fund_name": "平安先进制造主题股票发起C",
"date": "03-07",
"unit_net_value": "1.7452",
"cumulative_net_value": "1.7452",
"daily_growth_rate": "1.78%",
"1_week": "10.40%",
"1_month": "23.87%",
"3_months": "57.17%",
"6_months": "133.60%",
"1_year": "89.59%",
"since_inception": "74.52%",
"handling_fee": "0.00%"
},
{
"rank": 10,
"fund_code": "007713",
"fund_name": "华富科技动能混合A",
"date": "03-07",
"unit_net_value": "1.4600",
"cumulative_net_value": "1.5100",
"daily_growth_rate": "1.47%",
"1_week": "8.19%",
"1_month": "18.94%",
"3_months": "47.07%",
"6_months": "135.41%",
"1_year": "89.14%",
"since_inception": "51.93%",
"handling_fee": "0.15%"
}
]
}
二、结合pytest实现页面自动化测试
异步执行需要安装插件pytest-asyncio
pip install pytest-asyncio
@pytest.mark.asyncio
@pytest.mark.parametrize("username,password,expected", [("kevin@xxxx.com", "a123456", "kevin"),("kevin@xxxx.com", "123456", "账号密码输入错误")])
asyncdeftest_login(username, password, expected):
agent = Agent(
task=f"""
1、导航到网址:https://xxxxxxx.com
2、输入用户名:{username}, 密码:{password}
3、点击登录按钮
4、验证是否登录成功,登录成功返回{expected}
""",
llm=llm,
use_vision=False,
)
result = await agent.run()
assert expected in str(result.final_result())
三、总结
Browser Use 深度集成大语言模型(LLM),通过语义理解与视觉决策链实现零硬编码自动化,彻底颠覆传统脚本开发模式。AI 自动解析页面结构、动态生成操作路径,无需人工编写 XPath/CSS 定位器,开发效率提升 5 倍以上,尤其擅长处理动态验证、反爬策略及多步骤交互场景,成为金融数据抓取、跨平台测试的新一代智能引擎。