Redis hyperloglog学习

news2025/3/18 15:12:02

背景知识

【伯努利试验】:

【伯努利试验】是一个概率论中的概念,指在相同的条件下重复进行n次独立的试验,每次试验只有两种可能的结果,且这两种结果发生的概率是固定的
抛硬币作为伯努利试验:在抛硬币时,我们可以将正面出现视为“成功”,反面出现视为“失败”。如果硬币是公平的,那么每次抛掷正面或反面出现的概率都是1/2,这符合伯努利试验的定义。
n(一般实验次数) = 2^K K第K次抛出正面

【调和平均值算法】

平均值 = (数据1 + 数据2 + … + 数据n) / n 普通平均值算法对极端值敏感,例如 我和马云资产平均一下500亿,因此引入调和平均值
调和平均值 = n / (1/数据1 + 1/数据2 + … + 1/数据n) 这种平均值算法减少了极端值的影响

什么是hyperLoglog?

介绍:
hyperLoglog是Redis中的一种数据结构,用于进行基数估计(cardinality estimation)。基数估计是指在一个数据流或数据集中,估算不重复元素的数量。hyperLoglog通过一种概率算法,能够在使用较少内存的情况下,高效地估算出数据集的基数。

特点:
内存效率高:与传统的集合数据结构(如Redis的set)相比,hyperLoglog能够使用极少的内存空间来估算基数。这对于处理大规模数据流或数据集非常有用。 大小仅需12kb,误差率在0.2%左右
概率算法:hyperLoglog使用一种概率算法来估算基数,这意味着估算结果不是绝对准确的,但误差通常在一个可接受的范围内。这种算法的时间复杂度较低,使得估算过程非常高效。
适用于数据流:由于hyperLoglog的内存效率高且支持增量更新,它非常适合用于处理数据流场景,如网站访问量统计、用户行为分析等。

使用场景:
大规模数据集的基数估计:当需要估算一个大规模数据集中不重复元素的数量时,hyperLoglog是一个很好的选择。
数据流处理:在处理实时数据流时,hyperLoglog可以高效地估算出数据流中不重复元素的数量。
去重统计:在需要对数据进行去重统计时,hyperLoglog可以提供一个快速且内存高效的解决方案。

优点&缺点:
优点: 大小仅需12kb,误差率在0.2%左右
缺点:估算结果不是绝对准确的,但误差通常在一个可接受的范围内。

实现原理概述

hyperloglog实现原理: 根据实验值反推实验次数,将用户id 转成64位hash值,其中14位低位值用于分桶,分桶个数2的14次方个,高50位用于计算第一个1出现位置的索引值(0-50的一个值),因此使用6位存储足够, hyperlog内存12k计算:2∧14×6位/8比特/1024=12k
由于实验现象存在误差和偶然现象因此采用分组实验(这里叫分桶),分组结果求平均次数得出最终值,但是传统平均算法会有大值影响,典型案例我和马云工资平均50亿,为了避免这个问题才用了调和平均算法使得结果更加精准

1. 字符元素转成64位二进制数,读取方向从地位往高位读
|----------------------高位50位---------------------|----低位14位----|
|10000000000000000000000000000000000000000000000001|10000000000001|

2. 低位14位用于分桶,因此桶的数量就是2^14=16384个  高位50位用于计算第一个1出现位置的索引值
hyperloglog底层的存储就是[000000][000000][000000].....16384个,[000000]6位存储0-50的索引值,总共6*16384=98304位/8比特/1024=12k

3. 求和
n = 偏差因子*桶数*桶内元数数量 (由于概率统计存在偏差,内部会使用偏差因子纠正偏差),纠正后 100w数量偏差在0.2%左右

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2317283.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MySQL高频八股——事务过程中Undo log、Redo log、Binlog的写入顺序(涉及两阶段提交)

大家好,我是钢板兽! 在上一篇文章中,我分别介绍了 Undo Log、Redo Log 和 Binlog 在事务执行过程中的作用与写入机制。然而,实际应用中,这三种日志的写入是有先后顺序的。因此,本篇文章将深入探讨它们的写…

C++进阶——AVL树的实现

1、AVL的概念 1.1 AVL 树的发明 AVL 树由 G.M. Adelson-Velsky 和 E.M. Landis 在 1962 年的论文《An algorithm for the organization of information》中提出。他们的设计目标是解决二叉搜索树在动态操作(插入、删除)中可能退化为链表的问题。 1.2 …

打包当前Ubuntu镜像 制作Ubuntu togo系统

我的系统的基本情况说明: 我原来的系统的具体型号如下: uname -rLinux Engine 5.15.0-134-generic #145~20.04.1-Ubuntu SMP Mon Feb 17 13:27:16 UTC 2025 x86_64 x86_64 x86_64 GNU/Linux我原来的硬盘以及分区策略如下: 可以看到我的分区…

系统架构设计师—案例分析—架构设计

文章目录 经典架构风格对比面向对象架构风格/显示调用风格优点缺点举例 事件驱动的系统/隐式调用风格优点缺点举例 基于规则的系统架构风格优点缺点举例 管道过滤器风格优点缺点举例 仓库风格优点缺点举例 解释器风格优点缺点举例 分层架构风格优点缺点举例 经典架构风格对比 …

基于javaweb的SpringBoot智能相册管理系统图片相册系统设计与实现(源码+文档+部署讲解)

技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…

Android 14 Telephony 网络选择功能介绍

一、总体介绍 (一)功能 手动搜网的流程:用户通过UI触发,调用TelephonyManager的API,比如startNetworkScan,然后这个请求会传递到RIL层,通过AT命令与基带通信,进行网络扫描。结果返回后,经过TelephonyRegistry通知应用层。中间可能涉及IPC,比如Binder通信,因为应用和…

深入解析音频编解码器(Audio CODEC):硬件、接口与驱动开发

音频编解码器(Audio CODEC)是音频处理系统中的核心组件,负责 模拟信号与数字信号的相互转换,广泛应用于 智能音箱、嵌入式系统、消费电子产品 等设备。本篇文章将从 硬件结构、接口解析、驱动开发 和 软件配置 等方面,…

深度学习【迭代梯度下降法求解线性回归】

梯度下降法 梯度下降法是一种常用迭代方法,其目的是让输入向量找到一个合适的迭代方向,使得输出值能达到局部最小值。在拟合线性回归方程时,我们把损失函数视为以参数向量为输入的函数,找到其梯度下降的方向并进行迭代&#xff0…

[Lc14_priority_queue] 最后一块石头重量 | 数据流中的第 K 大元素 | 前K个高频单词 | 数据流的中位数

目录 1.最后一块石头的重量 题解 2.数据流中的第 K 大元素 题解 3.前K个高频单词 题解 代码 ⭕4.数据流的中位数 题解 在C中,使用标准库中的priority_queue,默认情况下它是一个最大堆(即大堆排序),这意味着最…

熔断和降级的区别,具体使用场景有哪些?

熔断与降级的核心区别在于触发条件和应用目标,具体差异及使用场景如下: 一、核心区别 对比维度熔断降级触发原因下游依赖服务故障(如超时、异常率过高)触发系统整体负载过高或流量洪峰管理目标层级框架级保护(无业务优…

利用hexo+github部署属于自己的个人博客网站(2025年3月所写)

利用hexogithub部署属于自己的个人博客网站 前情提要:如果你出现了莫名其妙的报错,可能与权限有关,可以以管理员的身份运行git bash或者cmd 本篇博客仅限于利用hexo搭建博客,并且部署到github上面,让自己可以有一个访…

pandas学习笔记(一)——基础知识和应用案例

pandas学习笔记 基础语法参考菜鸟教程:https://www.runoob.com/pandas/pandas-tutorial.html # jupyter import pandas as pd import matplotlib from matplotlib import pyplot as plt import numpy as npmatplotlib.use(TkAgg)data {timestamp: [1, 2, 3, 4, 5…

【AI 大模型】RAG 检索增强生成 ⑤ ( 向量数据库 | 向量数据库 索引结构和搜索算法 | 常见 向量数据库 对比 | 安装并使用 向量数据库 chromadb 案例 )

文章目录 一、向量数据库1、向量数据库引入2、向量数据库简介3、向量数据库 索引结构和搜索算法4、向量数据库 应用场景5、传统数据库 与 向量数据库 对比 二、常见 向量数据库 对比三、向量数据库 案例1、安装 向量数据库 chromadb2、核心要点 解析① 创建数据库实例② 创建数…

解决single cell portal点击下载但跳转的是网页

Single cell RNA-seq of Tmem100-lineage cells in a mouse model of osseointegration - Single Cell Portal 想下载个小鼠数据集: 点击下载跳转为网页: 复制bulk download给的链接无法下载 bulk download给的原链接: curl.exe "http…

基于 Prometheus + Grafana 监控微服务和数据库

以下是基于 Prometheus Grafana 监控微服务和数据库的详细指南&#xff0c;包含架构设计、安装配置及验证步骤&#xff1a; 一、整体架构设计 二、监控微服务 1. 微服务指标暴露 Spring Boot 应用&#xff1a; xml <!-- 添加 Micrometer 依赖 --> <dependency>…

CAN总线的CC帧和FD帧之间如何仲裁

为满足CAN总线日益提高的带宽需求&#xff0c;博世公司于2012年推出CAN FD&#xff08;具有灵活数据速率的CAN&#xff09;标准&#xff0c;国际标准化组织&#xff08;ISO&#xff09;2015年通过ISO 11898-1:2015标准&#xff0c;正式将CAN FD纳入国际标准&#xff0c;以示区别…

SpringBoot 第一课(Ⅲ) 配置类注解

目录 一、PropertySource 二、ImportResource ①SpringConfig &#xff08;Spring框架全注解&#xff09; ②ImportResource注解实现 三、Bean 四、多配置文件 多Profile文件的使用 文件命名约定&#xff1a; 激活Profile&#xff1a; YAML文件支持多文档块&#xff…

Excel(函数篇):COUNTIF与CONUTIFS函数、SUMIF与SUMIFS函数、ROUND函数、MATCH与INDEX函数、混合引用与条件格式

目录 COUNTIF和COUNTIFS函数COUNTIF函数COUNTIFS函数SUMIF和SUMIFS函数SUMIF函数SUMIFS函数SUMIFS函数与控件实现动态年月汇总ROUND、ROUNDUP、ROUNDDOWN函数单元格混合引用条件格式与公式,标记整行数据MATCH和INDEX函数COUNTIF和COUNTIFS函数 COUNTIF函数 统计下“苏州”出现…

虚拟定位 1.2.0.2 | 虚拟定位,上班打卡,校园跑步模拟

Fake Location是一款运行于安卓平台上的功能强大、简单实用的虚拟定位软件。它能够帮助用户自定义位置到地图上的任意地方&#xff0c;以ROOT环境运行不易被检测&#xff0c;同时也支持免ROOT运行。提供路线模拟、步频模拟、WIFI模拟等方式&#xff0c;支持反检测。 大小&…

【最大异或和——可持久化Trie】

题目 代码 #include <bits/stdc.h> using namespace std;const int N 6e510; //注意这里起始有3e5&#xff0c;又可能插入3e5 const int M N * 25;int rt[N], tr[M][2]; //根&#xff0c;trie int idx, cnt, br[M]; //根分配器&#xff0c;点分配器&#xff0c;点的相…