深度学习【迭代梯度下降法求解线性回归】

news2025/3/18 14:31:03


梯度下降法

梯度下降法是一种常用迭代方法,其目的是让输入向量找到一个合适的迭代方向,使得输出值能达到局部最小值。在拟合线性回归方程时,我们把损失函数视为以参数向量为输入的函数,找到其梯度下降的方向并进行迭代,就能找到最优的参数值。

1.计算对于给定的线性模型 (y = wx + b) 的均方误差(MSE)。它接受截距 (b)、斜率 (w) 和点集 (points),然后遍历所有点,计算每个点的预测值,与真实值之差的平方和,最后返回平均误差。

2.更新w和b

3.多次迭代后,得到最优的w和b,也就是y=wx+b这个模型对于给定数据集的最优

这里给定数据集:100个(x,y)

import torch
import numpy as np

#计算给定点集的线性回归的误差  y = wx + b
def compute_error_for_line_given_points(b,w,points):
    total_error = 0
    for i in range(len(points)):
        x = points[i,0]
        y = points[i,1]
        total_error += (y - (w*x + b))**2
    return total_error/float(len(points))

#梯度下降法求解线性回归  w = w - learning_rate * w_gradient, b = b - learning_rate * b_gradient
def step_gradient(b_current,w_current,points,learning_rate):
    b_gradient = 0
    w_gradient = 0
    n = float(len(points))
    for i in range(len(points)):
        x = points[i,0]
        y = points[i,1]
        b_gradient += -(2/n) * (y - ((w_current*x) + b_current))
        w_gradient += -(2/n) * x * (y - ((w_current*x) + b_current))
    new_b = b_current - (learning_rate * b_gradient)
    new_w = w_current - (learning_rate * w_gradient)
    return [new_b,new_w]

#迭代梯度下降法求解线性回归
def gradient_descent_runner(points,starting_b,starting_w,learning_rate,num_iterations):
    b = starting_b
    w = starting_w
    for i in range(num_iterations):
        b,w = step_gradient(b,w,points,learning_rate)
    return [b,w]

def run():
    points = np.genfromtxt('data.csv', delimiter=',')
    learning_rate = 0.0001
    initial_b = 0
    initial_w = 0
    num_iterations = 1000
    print("Starting gradient descent at b = {0}, w = {1}, error = {2}".format(initial_b,initial_w,compute_error_for_line_given_points(initial_b,initial_w,points)))
    print("Running...")
    [b,w] = gradient_descent_runner(points,initial_b,initial_w,learning_rate,num_iterations)
    print("After {0} iterations b = {1}, w = {2}, error = {3}".format(num_iterations,b,w,compute_error_for_line_given_points(b,w,points)))

if __name__ == '__main__':
    run()

执行结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2317270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[Lc14_priority_queue] 最后一块石头重量 | 数据流中的第 K 大元素 | 前K个高频单词 | 数据流的中位数

目录 1.最后一块石头的重量 题解 2.数据流中的第 K 大元素 题解 3.前K个高频单词 题解 代码 ⭕4.数据流的中位数 题解 在C中,使用标准库中的priority_queue,默认情况下它是一个最大堆(即大堆排序),这意味着最…

熔断和降级的区别,具体使用场景有哪些?

熔断与降级的核心区别在于触发条件和应用目标,具体差异及使用场景如下: 一、核心区别 对比维度熔断降级触发原因下游依赖服务故障(如超时、异常率过高)触发系统整体负载过高或流量洪峰管理目标层级框架级保护(无业务优…

利用hexo+github部署属于自己的个人博客网站(2025年3月所写)

利用hexogithub部署属于自己的个人博客网站 前情提要:如果你出现了莫名其妙的报错,可能与权限有关,可以以管理员的身份运行git bash或者cmd 本篇博客仅限于利用hexo搭建博客,并且部署到github上面,让自己可以有一个访…

pandas学习笔记(一)——基础知识和应用案例

pandas学习笔记 基础语法参考菜鸟教程:https://www.runoob.com/pandas/pandas-tutorial.html # jupyter import pandas as pd import matplotlib from matplotlib import pyplot as plt import numpy as npmatplotlib.use(TkAgg)data {timestamp: [1, 2, 3, 4, 5…

【AI 大模型】RAG 检索增强生成 ⑤ ( 向量数据库 | 向量数据库 索引结构和搜索算法 | 常见 向量数据库 对比 | 安装并使用 向量数据库 chromadb 案例 )

文章目录 一、向量数据库1、向量数据库引入2、向量数据库简介3、向量数据库 索引结构和搜索算法4、向量数据库 应用场景5、传统数据库 与 向量数据库 对比 二、常见 向量数据库 对比三、向量数据库 案例1、安装 向量数据库 chromadb2、核心要点 解析① 创建数据库实例② 创建数…

解决single cell portal点击下载但跳转的是网页

Single cell RNA-seq of Tmem100-lineage cells in a mouse model of osseointegration - Single Cell Portal 想下载个小鼠数据集: 点击下载跳转为网页: 复制bulk download给的链接无法下载 bulk download给的原链接: curl.exe "http…

基于 Prometheus + Grafana 监控微服务和数据库

以下是基于 Prometheus Grafana 监控微服务和数据库的详细指南&#xff0c;包含架构设计、安装配置及验证步骤&#xff1a; 一、整体架构设计 二、监控微服务 1. 微服务指标暴露 Spring Boot 应用&#xff1a; xml <!-- 添加 Micrometer 依赖 --> <dependency>…

CAN总线的CC帧和FD帧之间如何仲裁

为满足CAN总线日益提高的带宽需求&#xff0c;博世公司于2012年推出CAN FD&#xff08;具有灵活数据速率的CAN&#xff09;标准&#xff0c;国际标准化组织&#xff08;ISO&#xff09;2015年通过ISO 11898-1:2015标准&#xff0c;正式将CAN FD纳入国际标准&#xff0c;以示区别…

SpringBoot 第一课(Ⅲ) 配置类注解

目录 一、PropertySource 二、ImportResource ①SpringConfig &#xff08;Spring框架全注解&#xff09; ②ImportResource注解实现 三、Bean 四、多配置文件 多Profile文件的使用 文件命名约定&#xff1a; 激活Profile&#xff1a; YAML文件支持多文档块&#xff…

Excel(函数篇):COUNTIF与CONUTIFS函数、SUMIF与SUMIFS函数、ROUND函数、MATCH与INDEX函数、混合引用与条件格式

目录 COUNTIF和COUNTIFS函数COUNTIF函数COUNTIFS函数SUMIF和SUMIFS函数SUMIF函数SUMIFS函数SUMIFS函数与控件实现动态年月汇总ROUND、ROUNDUP、ROUNDDOWN函数单元格混合引用条件格式与公式,标记整行数据MATCH和INDEX函数COUNTIF和COUNTIFS函数 COUNTIF函数 统计下“苏州”出现…

虚拟定位 1.2.0.2 | 虚拟定位,上班打卡,校园跑步模拟

Fake Location是一款运行于安卓平台上的功能强大、简单实用的虚拟定位软件。它能够帮助用户自定义位置到地图上的任意地方&#xff0c;以ROOT环境运行不易被检测&#xff0c;同时也支持免ROOT运行。提供路线模拟、步频模拟、WIFI模拟等方式&#xff0c;支持反检测。 大小&…

【最大异或和——可持久化Trie】

题目 代码 #include <bits/stdc.h> using namespace std;const int N 6e510; //注意这里起始有3e5&#xff0c;又可能插入3e5 const int M N * 25;int rt[N], tr[M][2]; //根&#xff0c;trie int idx, cnt, br[M]; //根分配器&#xff0c;点分配器&#xff0c;点的相…

C# WPF编程-启动新窗口

C# WPF编程-启动新窗口 新建窗口&#xff1a; 工程》添加》窗口 命名并添加新的窗口 这里窗口名称为Window1.xaml 启动新窗口 Window1 win1 new Window1(); win1.Show(); // 非模态启动窗口win1.ShowDialog(); // 模态启动窗口 模态窗口&#xff1a;当一个模态窗口被打开时&a…

Python 实现大文件的高并发下载

项目背景 基于一个 scrapy-redis 搭建的分布式系统&#xff0c;所有item都通过重写 pipeline 存储到 redis 的 list 中。这里我通过代码演示如何基于线程池 协程实现对 item 的中文件下载。 Item 结构 目的是为了下载 item 中 attachments 保存的附件内容。 {"crawl_tim…

【最新】 ubuntu24安装 1panel 保姆级教程

系统&#xff1a;ubuntu24.04.1 安装软件 &#xff1a;1panel 第一步&#xff1a;更新系统 sudo apt update sudo apt upgrade 如下图 第二步&#xff1a;安装1panel&#xff0c;运行如下命令 curl -sSL https://resource.fit2cloud.com/1panel/package/quick_start.sh -o …

c++图论(二)之图的存储图解

在 C 中实现图的存储时&#xff0c;常用的方法包括 邻接矩阵&#xff08;Adjacency Matrix&#xff09;、邻接表&#xff08;Adjacency List&#xff09; 和 边列表&#xff08;Edge List&#xff09;。以下是具体实现方法、优缺点分析及代码示例&#xff1a; 1. 邻接矩阵&…

c++图论(一)之图论的起源和图的概念

C 图论之图论的起源和图的概念 图论&#xff08;Graph Theory&#xff09;是数学和计算机科学中的一个重要分支&#xff0c;其起源可以追溯到 18 世纪 的经典问题。以下是图论的历史背景、核心起源问题及其与基本概念和用途&#xff1a; 借用一下CSDN的图片哈 一、图论的起源&…

ChatGPT and Claude国内使用站点

RawChat kelaode chatgptplus chatopens&#xff08;4.o mini免费&#xff0c;plus收费&#xff09; 网页&#xff1a; 定价&#xff1a; wildcard 网页&#xff1a; 虚拟卡定价&#xff1a; 2233.ai 网页&#xff1a; 定价&#xff1a; MaynorAPI chatgpt cla…

进行性核上性麻痹:精心护理,点亮希望之光

进行性核上性麻痹是一种罕见的神经退行性疾病&#xff0c;严重影响患者的生活质量。有效的健康护理能够在一定程度上缓解症状、延缓病情发展&#xff0c;给患者带来更好的生活体验。 在日常生活护理方面&#xff0c;由于患者平衡能力逐渐下降&#xff0c;行动不便&#xff0c;居…

ZED X系列双目3D相机的耐用性与创新设计解析

在工业自动化和学术研究领域&#xff0c;高精度的视觉设备正成为提升效率和质量的关键。ZED X系列AI立体相机&#xff0c;凭借其先进的技术和耐用的设计&#xff0c;为这一领域带来了新的可能。 核心技术&#xff1a;深度感知与精准追踪 ZED X系列的核心技术之一是Neural Dept…