文章目录
- 前言
- 分治快排题:
- 043. [颜⾊分类(medium)](https://leetcode.cn/problems/sort-colors/description/)
- 分析
- 044. [快速排序(medium)](https://leetcode.cn/problems/sort-an-array/description/)
- 分析
- 045. [快速选择算法(medium)](https://leetcode.cn/problems/kth-largest-element-in-an-array/description/)
- 分析
- 046. [仓库管理](https://leetcode.cn/problems/zui-xiao-de-kge-shu-lcof/description/)
- 分析
- 分治归并题
- 047. [归并排序(medium)](https://leetcode.cn/problems/sort-an-array/description/)
- 分析
- 048. [数组中的逆序对(hard)](https://leetcode.cn/problems/shu-zu-zhong-de-ni-xu-dui-lcof/description/)
- 分析
- 049. [计算右侧⼩于当前元素的个数(hard)](https://leetcode.cn/problems/count-of-smaller-numbers-after-self/description/)
- 分析
- 050. [计算右侧⼩于当前元素的个数(hard)](https://leetcode.cn/problems/reverse-pairs/description/)
- 分析
- 总结
前言
分治顾名思义,就是分而治之,分治是一个思路,并不是由暴力优化而来的,还是因为暴力解的重复比较太多,我们可以将大问题划分为小问题(当然不是无厘头的划分),每次分割后,子问题的规模呈指数级缩小(理想情况下减半),总操作次数从 O(n^2) 降至 O(nlogn).
分治快排题:
043. 颜⾊分类(medium)
分析
class Solution {
public:
void sortColors(vector<int>& nums) {
int left = -1,right = nums.size();
int i = 0;
while(i < right)
{
if(nums[i] < 1) swap(nums[++left],nums[i++]);
else if(nums[i] > 1) swap(nums[--right],nums[i]);
else i++;
}
}
};
044. 快速排序(medium)
分析
class Solution {
public:
vector<int> sortArray(vector<int>& nums)
{
srand(time(nullptr));
qsort(nums,0,nums.size()-1);
return nums;
}
void qsort(vector<int>& nums,int l,int r)
{
//3.然后再写"归"的逻辑,如果只有一个值,一个值也是有序的,那么直接返回,不用排了.
//if(r - l + 1 == 1) return; 逻辑没错,但是有可能出现l 比 r大的情况
if(l >= r) return;
//1.这里分治用的是快排的方向,所以先将我们的数组进行划分,然后再递归子区间.
int key = getRandNum(nums,l,r); //随机找一个数作为key,避免有序情况的爆栈
int i = l;
int left = l - 1,right = r + 1;
while(i < right) //然后开始将数组根据key值进行划分
{
if(nums[i] < key) swap(nums[++left],nums[i++]);
else if(nums[i] > key) swap(nums[--right],nums[i]);
else i++;
}
//2.递归递归,当然要先写向深处"递"的逻辑.
qsort(nums,l,left);
qsort(nums,right,r);
}
int getRandNum(vector<int>& nums,int l,int r)
{
int x = rand();
return nums[x % (r - l + 1) + l];
}
};
045. 快速选择算法(medium)
分析
class Solution {
public:
int findKthLargest(vector<int>& nums, int k) {
srand(time(nullptr));
return qsort(nums,0,nums.size()-1,k);
}
int qsort(vector<int>& nums,int l,int r,int k)
{
if(l >= r) return nums[l];
int key = getRandpm(nums,l,r);
int i = l;
int left = l - 1,right = r + 1;
while(i < right)
{
if(nums[i] < key) swap(nums[++left],nums[i++]);
else if(nums[i] > key) swap(nums[--right],nums[i]);
else i++;
}
if(r - right + 1 >= k) return qsort(nums,right,r,k); //优化再递归思路这里,不用全部递归,可以根据大概的左右子区间的元素个数,判断一下我们的topK最终会在什么区间,时间复杂度是O(N).
else if(r - left >= k) return key;
else return qsort(nums,l,left,k - (r - left));
}
int getRandpm(vector<int>& nums,int l,int r)
{
return nums[rand() % (r - l + 1) + l];
}
};
046. 仓库管理
分析
class Solution {
public:
vector<int> inventoryManagement(vector<int>& stock, int cnt)
{
srand(time(nullptr));
qsort(stock,0,stock.size() - 1,cnt);
return {stock.begin(),stock.begin() + cnt};
}
void qsort(vector<int>& stock,int l,int r,int cnt)
{
if( l >= r) return;
int key = getRandom(stock,l,r);
int i = l,left = l - 1,right = r + 1;
while(i < right)
{
if(stock[i] < key) swap(stock[++left],stock[i++]);
else if(stock[i] > key) swap(stock[--right],stock[i]);
else i++;
}
int a = left - l + 1,b = right - left - 1,c = r - right + 1; //我们快排本来就是在原数组上面做操作,所以走完逻辑其实原数组也就拍好了
if(a >= cnt) qsort(stock, l,left,cnt);
else if(a + b >= cnt) return ;
else qsort(stock, right,r,cnt - a - b);
}
int getRandom(vector<int>& stock,int l,int r)
{
return stock[l + rand() % (r - l + 1)];
}
};
分治归并题
047. 归并排序(medium)
分析
class Solution {
vector<int> tmp; //我们合并的过程中,需要一个单独的容器暂时存储.
public:
vector<int> sortArray(vector<int>& nums) {
tmp.resize(nums.size());
mergeSort(nums,0,nums.size()-1);
return nums;
}
void mergeSort(vector<int>& nums,int left,int right)
{
//2.然后写"归"的逻辑,不然即使"递"到了最深处,即[l,r]区间的只有一个数据时,也不会停下.
if(left >= right) return; //只有一个数据时,也是有序的.
//1.从数组的中间开始划分,先"递"到最深处.
int mid = (right + left) >> 1;
mergeSort(nums,left,mid);
mergeSort(nums,mid + 1,right);
//3.然后开始每个组 合并的逻辑
int x = left;
int i = left,j = mid + 1;
while(i <= mid && j <= right)
{
if(nums[i] <= nums[j]) tmp[x++] = nums[i++];
else tmp[x++] = nums[j++];
}
while(i <= mid) //如果小组里面还有没合并完的大组,那么,直接放入tmp.
{
tmp[x++] = nums[i++];
}
while(j <= right)
{
tmp[x++] = nums[j++];
}
//将tmp数据同步回原数组,那么我们的一次合并就完成了.
for(int i = left;i <= right;i++)
{
nums[i] = tmp[i];
}
}
};
048. 数组中的逆序对(hard)
分析
class Solution
{
int tmp[50010];
public:
int reversePairs(vector<int>& record)
{
return mergeSort(record,0,record.size()-1);
}
int mergeSort(vector<int>& nums,int left,int right)
{
//2.写"归"的逻辑,让它在停在有两个最小组的层.方便我们对两个最小组中的值做刚开始的逆序对判断.
if(left >= right) return 0;
int ret = 0;
//1.先"递"到最小
int mid = (left + right) >> 1;
ret += mergeSort(nums,left,mid);
ret += mergeSort(nums,mid + 1,right);
//3.合并同时做判断,找到所有符合的逆序对
int cur1 = left,cur2 = mid + 1,i = left;
while(cur1 <= mid && cur2 <= right)
{
if(nums[cur2] >= nums[cur1])
{
tmp[i++] = nums[cur1++];
}
else
{
ret += mid - cur1 + 1;
tmp[i++] = nums[cur2++];
}
}
while(cur1 <= mid) tmp[i++] = nums[cur1++];
while(cur2 <= right) tmp[i++] = nums[cur2++];
//4.将tmp中排序好的顺序数组,覆盖回原数组.
for(int i = left;i <= right;i++)
{
nums[i] = tmp[i];
}
return ret;
}
};
049. 计算右侧⼩于当前元素的个数(hard)
分析
class Solution {
vector<int> ret;
vector<int> index;
int tmp[100010];
int tmpIndex[100010];
public:
vector<int> countSmaller(vector<int>& nums)
{
int n = nums.size();
ret.resize(n,0);
index.resize(n);
for(int i = 0;i < n;i++)
index[i] = i;
mergeSort(nums,0,n-1);
return ret;
}
void mergeSort(vector<int>& nums,int left,int right)
{
if(left >= right) return;
int mid = (left + right) >> 1;
mergeSort(nums,left,mid);
mergeSort(nums,mid + 1,right);
int cur1 = left,cur2 = mid + 1,i = left;
while(cur1 <= mid && cur2 <= right)
{
if(nums[cur1] > nums[cur2])
{
ret[index[cur1]] += right - cur2 + 1;
tmp[i] = nums[cur1];
tmpIndex[i++] = index[cur1++];
}
else
{
tmp[i] = nums[cur2];
tmpIndex[i++] = index[cur2++];
}
}
while(cur1 <= mid)
{
tmp[i] = nums[cur1];
tmpIndex[i++] = index[cur1++];
}
while(cur2 <= right)
{
tmp[i] = nums[cur2];
tmpIndex[i++] = index[cur2++];
}
//将临时的下标数组和原数组都同步回去.
for(int i = left;i <= right;i++)
{
nums[i] = tmp[i];
index[i] = tmpIndex[i];
}
}
};
050. 计算右侧⼩于当前元素的个数(hard)
分析
class Solution {
int tmp[50010];
public:
int reversePairs(vector<int>& nums)
{
return mergeSort(nums,0,nums.size() - 1);
}
int mergeSort(vector<int>& nums,int left,int right)
{
//2."归"
if(left >= right) return 0;
int ret = 0;
//1.先"递"
int mid = (left + right) >> 1;
ret += mergeSort(nums,left,mid);
ret += mergeSort(nums,mid + 1,right);
//2.1统计所有翻转对.
int cur1 = left,cur2 = mid + 1,i = left;
while(cur2 <= right)
{
while(cur1 <= mid && nums[cur1] / 2.0 <= nums[cur2]) cur1++;
if(cur1 > mid) break;
ret += mid - cur1 + 1;
cur2++;
}
cur1 = left,cur2 = mid + 1;
//3.排序并判断翻转对
while(cur1 <= mid && cur2 <= right)
{
if(nums[cur1] <= nums[cur2])
{
tmp[i++] = nums[cur1++];
}
else
{
tmp[i++] = nums[cur2++];
}
}
//4.将没有排完的排完
while(cur1 <= mid)
{
tmp[i++] = nums[cur1++];
}
while(cur2 <= right)
{
tmp[i++] = nums[cur2++];
}
//5.将排好的数组覆盖原数组.
for(int i = left;i <= right;i++)
{
nums[i] = tmp[i];
}
return ret;
}
};
总结
分治的思路,远不止这两种,将问题划分小也不总是针对一个数组的(动规也是分治思想的延伸),但是本专题,针对数组的划分,尽量理解"我们是一名老师,让孩子们站队"的例子.
本文章为作者的笔记和心得记录,顺便进行知识分享,有任何错误请评论指点:)。