MySQL意向锁我该怎么理解?

news2025/3/18 5:47:45

在MySQL中,意向锁(Intention Lock)是一种用于协调不同粒度锁(如表锁和行锁)的机制,其核心目的是在保证数据一致性的同时提高并发性能。以下是关于意向锁的详细解析:


一、意向锁的作用

意向锁的主要功能是声明事务在更细粒度(如行)上的锁意图,从而避免粗粒度锁(如表锁)与细粒度锁之间的冲突。例如:

  • 当一个事务需要对表中的某些行加行级锁时,它需要先在表级别加意向锁,表示“这个表中的某些行可能被锁定”。
  • 其他事务在尝试加表级锁时,可以通过意向锁快速判断是否存在冲突,减少锁检查的开销。

二、意向锁的类型

MySQL支持两种意向锁:

  1. 意向共享锁(Intention Shared Lock, IS)

    • 表示事务打算在表中的某些行上加共享锁(S Lock)
    • 例如:SELECT ... LOCK IN SHARE MODE
  2. 意向排他锁(Intention Exclusive Lock, IX)

    • 表示事务打算在表中的某些行上加排他锁(X Lock)
    • 例如:SELECT ... FOR UPDATEUPDATEDELETE 操作。

三、意向锁的加锁规则

  1. 加锁顺序

    • 事务在加行级锁(S/X)之前,必须先在表级加对应的意向锁(IS/IX)。
    • 例如:
      -- 事务A对行加共享锁
      BEGIN;
      LOCK TABLES table_name READ;           -- 表级IS锁
      SELECT * FROM table_name WHERE id = 1 LOCK IN SHARE MODE; -- 行级S锁
      COMMIT;
      
  2. 释放顺序

    • 行级锁释放后,表级意向锁才会释放。

四、意向锁的兼容性

不同锁之间的兼容性决定了事务是否会被阻塞。以下是锁兼容性矩阵:

当前锁 \ 请求锁ISIXSX
IS✔️✔️✔️
IX✔️
S✔️✔️
X
  • IS 与 IS/IX:兼容,多个事务可以同时声明行级读意向。
  • IX 与 IX:不兼容,避免多个事务同时修改同一表的行。
  • S/X 与 IS/IX:根据锁类型决定是否兼容。

五、意向锁的实际应用

场景 1:避免表锁与行锁冲突
  • 事务A:对表加表级写锁(X)。
    需要检查是否有其他事务持有该表的IS/IX锁。若有,则阻塞。
  • 事务B:对表的某些行加行级读锁(S)。
    需要先加表级IS锁,此时事务A的X锁请求会被阻塞。
场景 2:提高并发性能
  • 意向锁允许事务在行级操作时,表级锁可以快速判断是否冲突,无需遍历所有行。

六、意向锁与普通锁的区别

特性普通锁(S/X)意向锁(IS/IX)
锁定粒度行或表
作用直接保护数据声明事务的锁意图
兼容性根据锁类型决定根据意向类型决定
使用场景数据读写协调不同粒度锁

七、总结

  • 核心目的:通过声明锁意向,协调不同粒度的锁冲突,提升并发性能。
  • 实现方式:在加行级锁前,先在表级加意向锁(IS/IX)。
  • 适用场景:高并发环境下,需要同时处理表级和行级操作的情况。

通过合理使用意向锁,可以在保证事务隔离性的同时,减少锁冲突,优化数据库的并发处理能力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2317024.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【YOLOv8】YOLOv8改进系列(7)----替换主干网络之LSKNet

主页:HABUO🍁主页:HABUO 🍁YOLOv8入门改进专栏🍁 🍁如果再也不能见到你,祝你早安,午安,晚安🍁 【YOLOv8改进系列】: 【YOLOv8】YOLOv8结构解读…

【LangChain】理论及应用实战(7):LCEL

文章目录 一、LCEL简介二、LCEL示例2.1 一个简单的示例2.2 RAG Search 三、LCEL下核心组件(PromptLLM)的实现3.1 单链结构3.2 使用Runnables来连接多链结构3.2.1 连接多链3.2.2 多链执行与结果合并3.2.3 查询SQL 3.3 自定义输出解析器 四、LCEL添加Memor…

ai本地化 部署常用Ollama软件

现在用最简单的方式介绍一下 Ollama 的作用和用法: Ollama 是什么? Ollama 是一个让你能在自己电脑上免费运行大型语言模型(比如 Llama 3、Mistral 等)的工具。 相当于你本地电脑上有一个类似 ChatGPT 的 AI,但完全…

vllm部署QwQ32B(Q4_K_M)

vllm部署QwQ32B(Q4_K_M) Ollama是一个轻量级的开源LLM推理框架,注重简单易用和本地部署,而VLLM是一个专注于高效推理的开源大型语言模型推理引擎,适合开发者在实际应用中集成和使用。两者的主要区别在于Ollama更注重为用户提供多种模型选择和…

企业内网监控软件的选型与应用:四款主流产品的深度剖析

在数字化办公的时代背景下,企业内部网络管理的重要性愈发显著。对于企业管理者而言,如何精准掌握员工工作状态,保障网络安全与工作效率,已成为亟待解决的关键问题。本文将深入剖析四款主流企业内网监控软件,探讨其功能…

Qt窗口控件之字体对话框QFontDialog

字体对话框QFontDialog QFontDialog 是 Qt 内置的字体对话框,用户能够在这里选择字体的样式、大小,设置加粗和下划线并将结果作为返回值返回。QFontDialog 最好使用其提供的静态函数实例化匿名对象,并获取返回值最为用户选择字体设置的结果。…

Qt QML实现视频帧提取

## 前言 视频帧率(Frame Rate)是指视频播放时每秒显示的画面帧数,通常用fps(Frames Per Second)来表示。视频是由一系列静止的图像帧组成的,而视频帧率则决定了这些图像帧在单位时间内播放的速度。较高的视…

在 Ubuntu 服务器上使用宝塔面板搭建博客

📌 介绍 在本教程中,我们将介绍如何在 Ubuntu 服务器 上安装 宝塔面板,并使用 Nginx PHP MySQL 搭建一个博客(如 WordPress)。 主要步骤包括: 安装宝塔面板配置 Nginx PHP MySQL绑定域名与 SSL 证书…

有了大语言模型还需要 RAG 做什么

一、百炼平台简介 阿里云的百炼平台就像是一个超级智能的大厨房,专门为那些想要做出美味AI大餐的企业和个人厨师准备的。你不需要从头开始做每一道菜,因为这个厨房已经为你准备了很多预制食材(预训练模型),你可以根据…

【从0到1搞懂大模型】RNN基础(4)

先说几个常用的可以下载数据集的地方 平台:kaggle(https://www.kaggle.com/datasets) 和鲸社区(https://www.heywhale.com/home) 阿里天池(https://tianchi.aliyun.com/) 其他:海量公…

【第K小数——可持久化权值线段树】

题目 代码 #include <bits/stdc.h> using namespace std;const int N 1e5 10;int a[N], b[N]; int n, m, len; int rt[N], idx; // idx 是点分配器struct node {int l, r;int s; } tr[N * 22];int getw(int x) {return lower_bound(b 1, b len 1, x) - b; }int bui…

本地部署Deep Seek-R1,搭建个人知识库——笔记

目录 一、本地部署 DeepSeek - R1 1&#xff1a;安装Ollama 2&#xff1a;部署DeepSeek - R1模型 3&#xff1a;安装Cherry Studio 二、构建私有知识库 一、本地部署 DeepSeek - R1 1&#xff1a;安装Ollama 1.打开Ollama下载安装 未科学上网&#xff0c;I 先打开迅雷再下…

【软考-架构】5.3、IPv6-网络规划-网络存储-补充考点

✨资料&文章更新✨ GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 文章目录 IPv6网络规划与设计建筑物综合布线系统PDS&#x1f4af;考试真题第一题第二题 磁盘冗余阵列网络存储技术其他考点&#x1f4af;考试真题第一题第二题 IPv6 网络规划与设计…

fastapi+angular外卖系统

说明&#xff1a; fastapiangular外卖系统 1.美食分类&#xff08;粥&#xff0c;粉&#xff0c;面&#xff0c;炸鸡&#xff0c;炒菜&#xff0c;西餐&#xff0c;奶茶等等&#xff09; 2.商家列表 &#xff08;kfc&#xff0c;兰州拉面&#xff0c;湘菜馆&#xff0c;早餐店…

鸿蒙路由 HMRouter 配置及使用 三 全局拦截器使用

1、前期准备 简单封装一个用户首选项的工具类 import { preferences } from "kit.ArkData";// 用户首选项方法封装 export class Preferences {private myPreferences: preferences.Preferences | null null;// 初始化init(context: Context, options: preference…

计算机视觉——深入理解卷积神经网络与使用卷积神经网络创建图像分类算法

引言 卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称 CNNs&#xff09;是一种深度学习架构&#xff0c;专门用于处理具有网格结构的数据&#xff0c;如图像、视频等。它们在计算机视觉领域取得了巨大成功&#xff0c;成为图像分类、目标检测、图像分…

永磁同步电机无速度算法--拓展卡尔曼滤波器

一、原理介绍 以扩展卡尔曼滤波算法为基础&#xff0c;建立基于EKF算法的估算转子位置和转速的离散模型。 实时性是扩展卡尔曼滤波器的一种特征&#xff0c;所以它可实时跟踪系统的状态并进行有效的输出&#xff0c;同时&#xff0c;它可以减少干扰、抑制噪声&#xff0c;其效…

【CF】Day9——Codeforces Round 953 (Div. 2) BCD

B. New Bakery 题目&#xff1a; 思路&#xff1a; 被标签害了&#xff0c;用什么二分&#xff08; 很简单的思维题&#xff0c;首先如果a > b&#xff0c;那么全选a就行了&#xff0c;还搞啥活动 否则就选 b - a 天来搞活动&#xff0c;为什么&#xff1f; 首先如果我…

harmonyOS NEXT开发与前端开发深度对比分析

文章目录 1. 技术体系概览1.1 技术栈对比1.2 生态对比 2. 开发范式比较2.1 鸿蒙开发范式2.2 前端开发范式 3. 框架特性对比3.1 鸿蒙 Next 框架特性3.2 前端框架特性 4. 性能优化对比4.1 鸿蒙性能优化4.2 前端性能优化 5. 开发工具对比5.1 鸿蒙开发工具5.2 前端开发工具 6. 学习…

Unity小框架之单例模式基类

单例模式&#xff08;Singleton Pattern&#xff09;是一种常用的创建型设计模式&#xff0c;其核心目标是确保一个类只有一个实例&#xff0c;并提供一个全局访问点。它常用于需要控制资源访问、共享配置或管理全局状态的场景&#xff08;如数据库连接池、日志管理器、应用配置…