【YOLOv8】YOLOv8改进系列(7)----替换主干网络之LSKNet

news2025/3/18 5:41:35

主页:HABUO🍁主页:HABUO

🍁YOLOv8入门+改进专栏🍁

🍁如果再也不能见到你,祝你早安,午安,晚安🍁


【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT 

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck 

YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2 

YOLOv8改进系列(6)----替换主干网络之VanillaNet


目录

💯一、LSKNet介绍

1. 简介

2. LSKNet架构设计

背景知识

研究方法

3. 实验与结果

数据集

实现细节

4. 关键结论

💯二、具体添加方法 

第①步:创建LSKNet.py

第②步:修改task.py 

(1)引入创建的lsknet文件 

(2)修改_predict_once函数 

(3)修改parse_model函数

第③步:yolov8.yaml文件修改   

第④步:验证是否加入成功  


💯一、LSKNet介绍

  • 论文题目:《Large Selective Kernel Network for Remote Sensing Object Detection》
  • 论文地址:https://arxiv.org/pdf/2303.09030

1. 简介

文章提出了一种名为 Large Selective Kernel Network(LSKNet)的新型网络架构,专门用于遥感图像中的目标检测任务。LSKNet 通过动态调整其大空间感受野,能够更好地模拟遥感场景中不同目标所需的长程上下文信息,从而显著提高了遥感目标检测的性能。

2. LSKNet架构设计

背景知识

遥感目标检测是计算机视觉中的一个重要领域,主要关注在高分辨率的航拍图像中识别和定位感兴趣的目标,如车辆、船只和飞机等。近年来,研究主要集中在改进目标的方向边界框表示上,但往往忽略了遥感场景中独特的先验知识。例如,遥感图像中的小目标可能因缺乏足够的长程上下文信息而被误检,且不同类型的目标所需的上下文范围差异很大。

研究方法

为了解决上述问题,作者提出了 LSKNet,其核心是 Large Kernel Selection(LSK)模块。LSK 模块通过以下机制实现:

  1. 大核分解:通过将大核分解为一系列深度可分离卷积(depth-wise convolutions),每个卷积核的大小和膨胀率逐渐增加,从而快速扩展感受野。例如,将一个大核分解为两个或三个深度可分离卷积,理论感受野可分别达到 23 和 29。

  2. 空间选择机制:通过空间选择机制,LSK 模块能够动态地选择不同尺度的大核特征图。具体来说,将不同感受野的特征图进行通道拼接后,通过平均池化和最大池化提取空间关系,再通过卷积层生成空间注意力图。每个空间注意力图通过 Sigmoid 函数生成对应的空间选择掩码,用于加权融合不同大核的特征图。

  3. 动态调整感受野:LSK 模块能够根据输入动态调整大核的选择,从而为每个目标自适应地调整感受野。这种设计使得网络能够更好地捕捉不同类型目标所需的长程上下文信息。


3. 实验与结果

数据集

作者在三个标准的遥感目标检测数据集上进行了实验:

  1. HRSC2016:包含 1061 张高分辨率遥感图像,用于船只检测。

  2. DOTA-v1.0:包含 2806 张遥感图像,涵盖 15 个类别,如飞机、桥梁、车辆等。

  3. FAIR1M-v1.0:包含 15266 张高分辨率图像,涵盖 5 个类别和 37 个子类别。

实现细节

  • LSKNet 的骨干网络基于流行的结构设计,包含重复的 LSKNet 块,每个块由 Large Kernel Selection 子块和 Feed-forward Network 子块组成。

  • 骨干网络首先在 ImageNet-1K 数据集上预训练,然后在目标遥感数据集上进行微调。

  • 使用 AdamW 优化器进行训练,初始学习率分别为 0.0004 和 0.0002,训练周期分别为 36 轮和 12 轮。


4. 关键结论

  • 性能提升:LSKNet 在 HRSC2016 数据集上达到了 98.46% 的 mAP,在 DOTA-v1.0 数据集上达到了 81.85% 的 mAP,在 FAIR1M-v1.0 数据集上达到了 47.87% 的 mAP,均超过了以往的最佳记录。

  • 效率与性能的平衡:通过大核分解,LSKNet 在保持高性能的同时,显著减少了参数量和计算量。例如,LSKNet-T 的参数量仅为 4.3M,FLOPs 为 19.1G,相比 ResNet-18(11.2M 参数和 38.1G FLOPs)大幅减少。

  • 上下文建模能力:通过可视化和分析,LSKNet 能够根据目标类型动态调整感受野,为不同类型的目标提供所需的长程上下文信息。例如,桥梁需要较大的上下文信息来区分与道路的相似性,而足球场等类别则需要较少的上下文信息。


💯二、具体添加方法 

第①步:创建LSKNet.py

创建完成后,将下面代码直接复制粘贴进去:

import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair as to_2tuple
from timm.layers import DropPath, to_2tuple
from functools import partial
import numpy as np

__all__ = 'lsknet_t', 'lsknet_s'

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class LSKblock(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.conv0 = nn.Conv2d(dim, dim, 5, padding=2, groups=dim)
        self.conv_spatial = nn.Conv2d(dim, dim, 7, stride=1, padding=9, groups=dim, dilation=3)
        self.conv1 = nn.Conv2d(dim, dim//2, 1)
        self.conv2 = nn.Conv2d(dim, dim//2, 1)
        self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3)
        self.conv = nn.Conv2d(dim//2, dim, 1)

    def forward(self, x):   
        attn1 = self.conv0(x)
        attn2 = self.conv_spatial(attn1)

        attn1 = self.conv1(attn1)
        attn2 = self.conv2(attn2)
        
        attn = torch.cat([attn1, attn2], dim=1)
        avg_attn = torch.mean(attn, dim=1, keepdim=True)
        max_attn, _ = torch.max(attn, dim=1, keepdim=True)
        agg = torch.cat([avg_attn, max_attn], dim=1)
        sig = self.conv_squeeze(agg).sigmoid()
        attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
        attn = self.conv(attn)
        return x * attn



class Attention(nn.Module):
    def __init__(self, d_model):
        super().__init__()

        self.proj_1 = nn.Conv2d(d_model, d_model, 1)
        self.activation = nn.GELU()
        self.spatial_gating_unit = LSKblock(d_model)
        self.proj_2 = nn.Conv2d(d_model, d_model, 1)

    def forward(self, x):
        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x


class Block(nn.Module):
    def __init__(self, dim, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU, norm_cfg=None):
        super().__init__()
        self.norm1 = nn.BatchNorm2d(dim)
        self.norm2 = nn.BatchNorm2d(dim)
        self.attn = Attention(dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        layer_scale_init_value = 1e-2            
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)

    def forward(self, x):
        x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
        return x


class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """

    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768, norm_cfg=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.BatchNorm2d(embed_dim)


    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = self.norm(x)        
        return x, H, W

class LSKNet(nn.Module):
    def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512],
                mlp_ratios=[8, 8, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 depths=[3, 4, 6, 3], num_stages=4, 
                 norm_cfg=None):
        super().__init__()
        
        self.depths = depths
        self.num_stages = num_stages

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0

        for i in range(num_stages):
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                            patch_size=7 if i == 0 else 3,
                                            stride=4 if i == 0 else 2,
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                            embed_dim=embed_dims[i], norm_cfg=norm_cfg)

            block = nn.ModuleList([Block(
                dim=embed_dims[i], mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j],norm_cfg=norm_cfg)
                for j in range(depths[i])])
            norm = norm_layer(embed_dims[i])
            cur += depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"block{i + 1}", block)
            setattr(self, f"norm{i + 1}", norm)
        
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def forward(self, x):
        B = x.shape[0]
        outs = []
        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
            norm = getattr(self, f"norm{i + 1}")
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x)
            x = x.flatten(2).transpose(1, 2)
            x = norm(x)
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            outs.append(x)
        return outs


class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)

    def forward(self, x):
        x = self.dwconv(x)
        return x

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def lsknet_t(weights=''):
    model = LSKNet(embed_dims=[32, 64, 160, 256], depths=[3, 3, 5, 2], drop_rate=0.1, drop_path_rate=0.1)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['state_dict']))
    return model

def lsknet_s(weights=''):
    model = LSKNet(embed_dims=[64, 128, 256, 512], depths=[2, 2, 4, 2], drop_rate=0.1, drop_path_rate=0.1)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['state_dict']))
    return model

if __name__ == '__main__':
    model = lsknet_t('lsk_t_backbone-2ef8a593.pth')
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

第②步:修改task.py 

(1)引入创建的lsknet文件 

from ultralytics.nn.backbone.lsknet import *

(2)修改_predict_once函数 

 def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for idx, m in enumerate(self.model):
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            
            # if type(x) in {list, tuple}:
            #     if idx == (len(self.model) - 1):
            #         if type(x[1]) is dict:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')
            #         else:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')
            #     else:
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
            # elif type(x) is dict:
            #     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')
            # else:
            #     if not hasattr(m, 'backbone'):
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')
            
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明 

def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast
 
    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        if len(scales[scale]) == 3:
            depth, width, max_channels = scales[scale]
        elif len(scales[scale]) == 4:
            depth, width, max_channels, threshold = scales[scale]
 
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
 
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a
        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, 
            C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
            C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
            C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
            DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
            OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
            C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
            C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
            C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
            C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
            C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
            C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
            C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
            C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
            C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
            C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
            C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
            C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
            C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
            C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
            C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
            C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
            C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
            MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
        }:
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads
 
            args = [c1, c2, *args[1:]]
            if m in (KWConv, C2f_KW, C3_KW):
                args.insert(2, f'layer{i}')
                args.insert(2, warehouse_manager)
            if m in (DySnakeConv,):
                c2 = c2 * 3
            if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in {
                     BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
                     VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
                     C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
                     C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
                     C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, 
                     C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
                     C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
                     C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
                     C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
                     C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
                     C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
                     C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
                     C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
                     C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
                     C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
                     C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
                     C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
                     C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
                     C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
                     MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
                     }:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in {AIFI, AIFI_RepBN}:
            args = [ch[f], *args]
            c2 = args[0]
        elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
            c1, cm, c2 = ch[f], args[0], args[1]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
                cm = make_divisible(min(cm, max_channels) * width, 8)
            args = [c1, cm, c2, *args[2:]]
            if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
            args.append([ch[x] for x in f])
            if m in SEGMENT_CLASS:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
                    args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
                args[1] = make_divisible(min(args[1], max_channels) * width, 8)
            if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is Fusion:
            args[0] = d[args[0]]
            c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
            args = [c1, args[0]]
        elif m is CBLinear:
            c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
            c1 = ch[f]
            args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        elif isinstance(m, str):
            t = m
            if len(args) == 2:        
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
                   fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
                   EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
                   efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
                   vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
                   RevCol,
                   lsknet_t, lsknet_s,
                   SwinTransformer_Tiny,
                   repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
                   CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
                   unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
                   transnext_micro, transnext_tiny, transnext_small, transnext_base,
                   RMT_T, RMT_S, RMT_B, RMT_L,
                   PKINET_T, PKINET_S, PKINET_B,
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
                   starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
                   }:
            if m is RevCol:
                args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
                args[2] = [max(round(k * depth), 1) for k in args[2]]
            m = m(*args)
            c2 = m.channel
        elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
                   TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
                   SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
                   EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
                   FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, 
                   DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
            c2 = ch[f]
            args = [c2, *args]
            # print(args)
        elif m in {SimAM, SpatialGroupEnhance}:
            c2 = ch[f]
        elif m is ContextGuidedBlock_Down:
            c2 = ch[f] * 2
            args = [ch[f], c2, *args]
        elif m is BiFusion:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [c1, c2]
        # --------------GOLD-YOLO--------------
        elif m in {SimFusion_4in, AdvPoolFusion}:
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is TopBasicLayer:
            c2 = sum(args[1])
        # --------------GOLD-YOLO--------------
        # --------------ASF--------------
        elif m is Zoom_cat:
            c2 = sum(ch[x] for x in f)
        elif m is Add:
            c2 = ch[f[-1]]
        elif m in {ScalSeq, DynamicScalSeq}:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(args[0] * width, 8)
            args = [c1, c2]
        elif m is asf_attention_model:
            args = [ch[f[-1]]]
        # --------------ASF--------------
        elif m is SDI:
            args = [[ch[x] for x in f]]
        elif m is Multiply:
            c2 = ch[f[0]]
        elif m is FocusFeature:
            c1 = [ch[x] for x in f]
            c2 = int(c1[1] * 0.5 * 3)
            args = [c1, *args]
        elif m is DASI:
            c1 = [ch[x] for x in f]
            args = [c1, c2]
        elif m is CSMHSA:
            c1 = [ch[x] for x in f]
            c2 = ch[f[-1]]
            args = [c1, c2]
        elif m is CFC_CRB:
            c1 = ch[f]
            c2 = c1 // 2
            args = [c1, *args]
        elif m is SFC_G2:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
            c2 = ch[f[1]]
            args = [c2, *args]
        elif m in {ContextGuideFusionModule}:
            c1 = [ch[x] for x in f]
            c2 = 2 * c1[1]
            args = [c1]
        # elif m in {PSA}:
        #     c2 = ch[f]
        #     args = [c2, *args]
        elif m in {SBA}:
            c1 = [ch[x] for x in f]
            c2 = c1[-1]
            args = [c1, c2]
        elif m in {WaveletPool}:
            c2 = ch[f] * 4
        elif m in {WaveletUnPool}:
            c2 = ch[f] // 4
        elif m in {CSPOmniKernel}:
            c2 = ch[f]
            args = [c2]
        elif m in {ChannelTransformer, PyramidContextExtraction}:
            c1 = [ch[x] for x in f]
            c2 = c1
            args = [c1]
        elif m in {RCM}:
            c2 = ch[f]
            args = [c2, *args]
        elif m in {DynamicInterpolationFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f]]
        elif m in {FuseBlockMulti}:
            c2 = ch[f[0]]
            args = [c2]
        elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
            c2 = [ch[x] for x in f]
            args = [c2[0], *args]
        elif m in {FreqFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f], *args]
        elif m in {DynamicAlignFusion}:
            c2 = args[0]
            args = [[ch[x] for x in f], c2]
        elif m in {ConvEdgeFusion}:
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [[ch[x] for x in f], c2]
        elif m in {MutilScaleEdgeInfoGenetator}:
            c1 = ch[f]
            c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
            args = [c1, c2]
        elif m in {MultiScaleGatedAttn}:
            c1 = [ch[x] for x in f]
            c2 = min(c1)
            args = [c1]
        elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {GetIndexOutput}:
            c2 = ch[f][args[0]]
        elif m is HyperComputeModule:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, threshold]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改   

在下述文件夹中创立yolov8-lsknet.yaml

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, lsknet_t, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功   

将train.py中的配置文件进行修改,并运行  


🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋

🍁YOLOv8入门+改进专栏🍁


 【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT 

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck 

YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2 

YOLOv8改进系列(6)----替换主干网络之VanillaNet


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2317018.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【LangChain】理论及应用实战(7):LCEL

文章目录 一、LCEL简介二、LCEL示例2.1 一个简单的示例2.2 RAG Search 三、LCEL下核心组件&#xff08;PromptLLM&#xff09;的实现3.1 单链结构3.2 使用Runnables来连接多链结构3.2.1 连接多链3.2.2 多链执行与结果合并3.2.3 查询SQL 3.3 自定义输出解析器 四、LCEL添加Memor…

ai本地化 部署常用Ollama软件

现在用最简单的方式介绍一下 Ollama 的作用和用法&#xff1a; Ollama 是什么&#xff1f; Ollama 是一个让你能在自己电脑上免费运行大型语言模型&#xff08;比如 Llama 3、Mistral 等&#xff09;的工具。 相当于你本地电脑上有一个类似 ChatGPT 的 AI&#xff0c;但完全…

vllm部署QwQ32B(Q4_K_M)

vllm部署QwQ32B(Q4_K_M) Ollama是一个轻量级的开源LLM推理框架&#xff0c;注重简单易用和本地部署&#xff0c;而VLLM是一个专注于高效推理的开源大型语言模型推理引擎&#xff0c;适合开发者在实际应用中集成和使用。两者的主要区别在于Ollama更注重为用户提供多种模型选择和…

企业内网监控软件的选型与应用:四款主流产品的深度剖析

在数字化办公的时代背景下&#xff0c;企业内部网络管理的重要性愈发显著。对于企业管理者而言&#xff0c;如何精准掌握员工工作状态&#xff0c;保障网络安全与工作效率&#xff0c;已成为亟待解决的关键问题。本文将深入剖析四款主流企业内网监控软件&#xff0c;探讨其功能…

Qt窗口控件之字体对话框QFontDialog

字体对话框QFontDialog QFontDialog 是 Qt 内置的字体对话框&#xff0c;用户能够在这里选择字体的样式、大小&#xff0c;设置加粗和下划线并将结果作为返回值返回。QFontDialog 最好使用其提供的静态函数实例化匿名对象&#xff0c;并获取返回值最为用户选择字体设置的结果。…

Qt QML实现视频帧提取

## 前言 视频帧率&#xff08;Frame Rate&#xff09;是指视频播放时每秒显示的画面帧数&#xff0c;通常用fps&#xff08;Frames Per Second&#xff09;来表示。视频是由一系列静止的图像帧组成的&#xff0c;而视频帧率则决定了这些图像帧在单位时间内播放的速度。较高的视…

在 Ubuntu 服务器上使用宝塔面板搭建博客

&#x1f4cc; 介绍 在本教程中&#xff0c;我们将介绍如何在 Ubuntu 服务器 上安装 宝塔面板&#xff0c;并使用 Nginx PHP MySQL 搭建一个博客&#xff08;如 WordPress&#xff09;。 主要步骤包括&#xff1a; 安装宝塔面板配置 Nginx PHP MySQL绑定域名与 SSL 证书…

有了大语言模型还需要 RAG 做什么

一、百炼平台简介 阿里云的百炼平台就像是一个超级智能的大厨房&#xff0c;专门为那些想要做出美味AI大餐的企业和个人厨师准备的。你不需要从头开始做每一道菜&#xff0c;因为这个厨房已经为你准备了很多预制食材&#xff08;预训练模型&#xff09;&#xff0c;你可以根据…

【从0到1搞懂大模型】RNN基础(4)

先说几个常用的可以下载数据集的地方 平台&#xff1a;kaggle&#xff08;https://www.kaggle.com/datasets&#xff09; 和鲸社区&#xff08;https://www.heywhale.com/home&#xff09; 阿里天池&#xff08;https://tianchi.aliyun.com/&#xff09; 其他&#xff1a;海量公…

【第K小数——可持久化权值线段树】

题目 代码 #include <bits/stdc.h> using namespace std;const int N 1e5 10;int a[N], b[N]; int n, m, len; int rt[N], idx; // idx 是点分配器struct node {int l, r;int s; } tr[N * 22];int getw(int x) {return lower_bound(b 1, b len 1, x) - b; }int bui…

本地部署Deep Seek-R1,搭建个人知识库——笔记

目录 一、本地部署 DeepSeek - R1 1&#xff1a;安装Ollama 2&#xff1a;部署DeepSeek - R1模型 3&#xff1a;安装Cherry Studio 二、构建私有知识库 一、本地部署 DeepSeek - R1 1&#xff1a;安装Ollama 1.打开Ollama下载安装 未科学上网&#xff0c;I 先打开迅雷再下…

【软考-架构】5.3、IPv6-网络规划-网络存储-补充考点

✨资料&文章更新✨ GitHub地址&#xff1a;https://github.com/tyronczt/system_architect 文章目录 IPv6网络规划与设计建筑物综合布线系统PDS&#x1f4af;考试真题第一题第二题 磁盘冗余阵列网络存储技术其他考点&#x1f4af;考试真题第一题第二题 IPv6 网络规划与设计…

fastapi+angular外卖系统

说明&#xff1a; fastapiangular外卖系统 1.美食分类&#xff08;粥&#xff0c;粉&#xff0c;面&#xff0c;炸鸡&#xff0c;炒菜&#xff0c;西餐&#xff0c;奶茶等等&#xff09; 2.商家列表 &#xff08;kfc&#xff0c;兰州拉面&#xff0c;湘菜馆&#xff0c;早餐店…

鸿蒙路由 HMRouter 配置及使用 三 全局拦截器使用

1、前期准备 简单封装一个用户首选项的工具类 import { preferences } from "kit.ArkData";// 用户首选项方法封装 export class Preferences {private myPreferences: preferences.Preferences | null null;// 初始化init(context: Context, options: preference…

计算机视觉——深入理解卷积神经网络与使用卷积神经网络创建图像分类算法

引言 卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称 CNNs&#xff09;是一种深度学习架构&#xff0c;专门用于处理具有网格结构的数据&#xff0c;如图像、视频等。它们在计算机视觉领域取得了巨大成功&#xff0c;成为图像分类、目标检测、图像分…

永磁同步电机无速度算法--拓展卡尔曼滤波器

一、原理介绍 以扩展卡尔曼滤波算法为基础&#xff0c;建立基于EKF算法的估算转子位置和转速的离散模型。 实时性是扩展卡尔曼滤波器的一种特征&#xff0c;所以它可实时跟踪系统的状态并进行有效的输出&#xff0c;同时&#xff0c;它可以减少干扰、抑制噪声&#xff0c;其效…

【CF】Day9——Codeforces Round 953 (Div. 2) BCD

B. New Bakery 题目&#xff1a; 思路&#xff1a; 被标签害了&#xff0c;用什么二分&#xff08; 很简单的思维题&#xff0c;首先如果a > b&#xff0c;那么全选a就行了&#xff0c;还搞啥活动 否则就选 b - a 天来搞活动&#xff0c;为什么&#xff1f; 首先如果我…

harmonyOS NEXT开发与前端开发深度对比分析

文章目录 1. 技术体系概览1.1 技术栈对比1.2 生态对比 2. 开发范式比较2.1 鸿蒙开发范式2.2 前端开发范式 3. 框架特性对比3.1 鸿蒙 Next 框架特性3.2 前端框架特性 4. 性能优化对比4.1 鸿蒙性能优化4.2 前端性能优化 5. 开发工具对比5.1 鸿蒙开发工具5.2 前端开发工具 6. 学习…

Unity小框架之单例模式基类

单例模式&#xff08;Singleton Pattern&#xff09;是一种常用的创建型设计模式&#xff0c;其核心目标是确保一个类只有一个实例&#xff0c;并提供一个全局访问点。它常用于需要控制资源访问、共享配置或管理全局状态的场景&#xff08;如数据库连接池、日志管理器、应用配置…

cesium 实现万级管网数据渲染,及pickImageryLayerFeatures原生方法改写

需求背景解决效果getFeatureInfo 需求背景 在用 geoserver 渲染图层时&#xff0c;会自动触发 GetFeatureInfo &#xff0c;与服务器通信&#xff0c;在万级海量数据渲染下&#xff0c;这个性能消耗就可以感受到了 需要考虑的点&#xff1a; 1.通过enablePickFeatures&#xf…