python拉取大视频导入deepseek大模型解决方案

news2025/3/17 13:09:43

使用Python拉取大视频并导入大模型,需要综合考虑数据获取、存储、处理和资源管理,确保高效稳定地处理大视频数据,同时充分利用大模型的性能,以下是分步方案及代码示例:

 

---

 

 1. 分块下载大视频(避免内存溢出)

使用流式下载将视频保存到本地,避免一次性加载到内存。

```python

import requests

 

def download_large_file(url, save_path, chunk_size=8192):

    with requests.get(url, stream=True) as r:

        r.raise_for_status()

        with open(save_path, 'wb') as f:

            for chunk in r.iter_content(chunk_size=chunk_size):

                f.write(chunk)

    return save_path

 

 示例:下载视频

video_url = "https://example.com/large_video.mp4"

local_path = download_large_file(video_url, "temp_video.mp4")

```

---

 2. 逐帧读取视频(避免内存爆炸)

使用OpenCV或PyAV逐帧读取视频,生成迭代器。

 

python

import cv2

 

def video_frame_generator(video_path):

    cap = cv2.VideoCapture(video_path)

    while cap.isOpened():

        ret, frame = cap.read()

        if not ret:

            break

        yield frame 返回单帧数据

    cap.release()

 

 示例:逐帧处理

for frame in video_frame_generator(local_path):

     此处处理单帧

    pass

 

---

 

 3. 使用大模型进行分批次推理

将视频帧分批次输入模型,优化GPU利用率。

 

python

import torch

from torchvision import transforms

 

 加载预训练模型(示例使用PyTorch)

model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)

model.eval()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model.to(device)

 

 预处理变换

preprocess = transforms.Compose(

    transforms.ToTensor(),

    transforms.Resize((224, 224)),

)

 

 分批处理帧

batch_size = 32

batch = 

for frame in video_frame_generator(local_path):

    tensor_frame = preprocess(frame).unsqueeze(0).to(device)

    batch.append(tensor_frame)

    if len(batch) >= batch_size:

        with torch.no_grad():

            inputs = torch.cat(batch, dim=0)

            outputs = model(inputs)

             处理输出结果

        batch = 清空批次

 

---

 

 4. 分布式处理(可选)

使用PyTorch Distributed或Horovod加速计算。

 

python

import torch.distributed as dist

 

 初始化分布式环境

dist.init_process_group(backend='nccl')

local_rank = dist.get_rank()

 

 将数据和模型分配到对应GPU

torch.cuda.set_device(local_rank)

model = model.to(local_rank)

model = torch.nn.parallel.DistributedDataParallel(model, device_ids=local_rank)

 

---

 

 5. 内存和显存优化

- 动态调整批次大小:根据显存占用自动调整。

- 混合精度训练:减少显存消耗。

 

python

scaler = torch.cuda.amp.GradScaler() 混合精度

 

with torch.cuda.amp.autocast():

    outputs = model(inputs)

 

---

 

 6. 结果保存与后处理

将处理结果保存到文件或数据库。

 

python

import json

 

results = 

for frame in video_frame_generator(local_path):

     假设处理结果为result

    results.append(result.tolist())

 

with open("output.json", "w") as f:

    json.dump(results, f)

 

---

 

 7. 清理临时文件

处理完成后删除临时视频文件。

 

python

import os

 

os.remove(local_path)

 

---

 

 关键优化点

1. 流式下载与存储:避免大文件内存占用。

2. 生成器逐帧读取:防止视频数据一次性加载。

3. 分批次推理:平衡显存与计算效率。

4. 分布式计算:横向扩展处理能力。

5. 资源监控:实时检测内存/显存使用。

 

---

 

 扩展建议

- 使用云存储:如AWS S3直接读取视频流,避免本地存储。

- 异步处理框架:结合Celery或Dask实现任务队列。

- 模型轻量化:使用ONNX或TensorRT加速推理。

 

通过上述方案,可高效处理大视频与大模型的结合任务,同时确保系统稳定性。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2316634.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

为什么需要使用十堰高防服务器?

十堰高防服务器的核心价值与应用必要性 一、‌应对复杂攻击的防御能力‌ ‌T级DDoS攻击防护‌ 十堰高防服务器搭载 ‌T级清洗中心‌,支持智能流量调度与分层处理,可抵御 ‌800Gbps-1.2Tbps‌ 的大规模混合攻击(如SYN Flood、UDP反射&#xff…

人工智能中的线性代数基础详解

‌ 线性代数是人工智能领域的重要数学基础之一,是人工智能技术的底层数学支柱,它为数据表示、模型构建和算法优化提供了核心工具。其核心概念与算法应用贯穿数据表示、模型训练及优化全过程。更多内容可看我文章:人工智能数学基础详解与拓展-CSDN博客 一、基本介绍 …

【毕业论文格式】word分页符后的标题段前间距消失

文章目录 【问题描述】 分页符之后的段落开头,明明设置了标题有段前段后间距,但是没有显示间距: 【解决办法】 选中标题,选择边框 3. 选择段前间距,1~31磅的一个数 结果

【蓝桥杯每日一题】3.16

🏝️专栏: 【蓝桥杯备篇】 🌅主页: f狐o狸x 目录 3.9 高精度算法 一、高精度加法 题目链接: 题目描述: 解题思路: 解题代码: 二、高精度减法 题目链接: 题目描述&…

2.7 滑动窗口专题:串联所有单词的子串

LeetCode 30. 串联所有单词的子串算法对比分析 1. 题目链接 LeetCode 30. 串联所有单词的子串 2. 题目描述 给定一个字符串 s 和一个字符串数组 words,words 中所有单词长度相同。要求找到 s 中所有起始索引,使得从该位置开始的连续子串包含 words 中所…

电脑实用小工具--VMware常用功能简介

一、创建、编辑虚拟机 1.1 创建新的虚拟机 详见文章新创建虚拟机流程 1.2 编辑虚拟机 创建完成后,点击编辑虚拟机设置,可对虚拟机内存、处理器、硬盘等各再次进行编辑设置。 二、虚拟机开关机 2.1 打开虚拟机 虚拟机创建成功后,点击…

为训练大模型而努力-分享2W多张卡通头像的图片

最近我一直在研究AI大模型相关的内容,想着从现在开始慢慢收集各种各样的图片,万一以后需要训练大模型的时候可以用到,或者自己以后也许会需要。于是决定慢慢收集这些图片,为未来的学习和训练大模型做一些铺垫,哈哈。 …

JVM 垃圾回收器的选择

一:jvm性能指标吞吐量以及用户停顿时间解释。 二:垃圾回收器的选择。 三:垃圾回收器在jvm中的配置。 四:jvm中常用的gc算法。 一:jvm性能指标吞吐量以及用户停顿时间解释。 在 JVM 调优和垃圾回收器选择中&#xff0…

使用GPTQ量化Llama-3-8B大模型

使用GPTQ量化8B生成式语言模型 服务器配置:4*3090 描述:使用四张3090,分别进行单卡量化,多卡量化。并使用SGLang部署量化后的模型,使用GPTQ量化 原来的模型精度为FP16,量化为4bit 首先下载gptqmodel量化…

2025-03-16 学习记录--C/C++-PTA 习题4-2 求幂级数展开的部分和

合抱之木,生于毫末;九层之台,起于累土;千里之行,始于足下。💪🏻 一、题目描述 ⭐️ 习题4-2 求幂级数展开的部分和 已知函数e^x可以展开为幂级数1xx^2/2!x^3/3!⋯x^k/k!⋯。现给定一个实数x&a…

【C#】Http请求设置接收不安全的证书

在进行HTTP请求时&#xff0c;出现以下报错&#xff0c;可设置接收不安全证书跳过证书验证&#xff0c;建议仅测试环境设置&#xff0c;生产环境可能会造成系统漏洞 /// <summary> /// HttpGet请求方法 /// </summary> /// <param name"requestUrl"&…

AP AR

混淆矩阵 真实值正例真实值负例预测值正例TPFP预测值负例FNTN &#xff08;根据阈值预测&#xff09; P精确度计算&#xff1a;TP/(TPFP) R召回率计算&#xff1a;TP/(TPFN) AP 综合考虑P R 根据不同的阈值计算出不同的PR组合&#xff0c; 画出PR曲线&#xff0c;计算曲线…

Leetcode-1278.Palindrome Partitioning III [C++][Java]

目录 一、题目描述 二、解题思路 【C】 【Java】 Leetcode-1278.Palindrome Partitioning IIIhttps://leetcode.com/problems/palindrome-partitioning-iii/description/1278. 分割回文串 III - 力扣&#xff08;LeetCode&#xff09;1278. 分割回文串 III - 给你一个由小写…

C++特性——智能指针

为什么需要智能指针 对于定义的局部变量&#xff0c;当作用域结束之后&#xff0c;就会自动回收&#xff0c;这没有什么问题。 当时用new delete的时候&#xff0c;就是动态分配对象的时候&#xff0c;如果new了一个变量&#xff0c;但却没有delete&#xff0c;这会造成内存泄…

ctf web入门知识合集

文章目录 01做题思路02信息泄露及利用robots.txt.git文件泄露dirsearch ctfshow做题记录信息搜集web1web2web3web4web5web6web7web8SVN泄露与 Git泄露的区别web9web10 php的基础概念php的基础语法1. PHP 基本语法结构2. PHP 变量3.输出数据4.数组5.超全局变量6.文件操作 php的命…

MySQL-存储过程和自定义函数

存储过程 存储过程&#xff0c;一组预编译的 SQL 语句和流程控制语句&#xff0c;被命名并存储在数据库中。存储过程可以用来封装复杂的数据库操作逻辑&#xff0c;并在需要时进行调用。 使用存储过程 创建存储过程 create procedure 存储过程名() begin存储过程的逻辑代码&…

图——表示与遍历

图的两种主要表示方法 图有两种常用的表示方法&#xff0c;一种是邻接表法&#xff08;adjacency-list&#xff09;&#xff0c;另一种是邻接矩阵法&#xff08;adjacency-matrix&#xff09;。 邻接表法储存数据更紧凑&#xff0c;适合稀疏的图&#xff08;sparse graphs&am…

新手村:数据预处理-异常值检测方法

机器学习中异常值检测方法 一、前置条件 知识领域要求编程基础Python基础&#xff08;变量、循环、函数&#xff09;、Jupyter Notebook或PyCharm使用。统计学基础理解均值、中位数、标准差、四分位数、正态分布、Z-score等概念。机器学习基础熟悉监督/无监督学习、分类、聚类…

ChatGPT-4

第一章&#xff1a;ChatGPT-4的技术背景与核心架构 1.1 生成式AI的发展脉络 生成式人工智能&#xff08;Generative AI&#xff09;的演进历程可追溯至20世纪50年代的早期自然语言处理研究。从基于规则的ELIZA系统到统计语言模型&#xff0c;再到深度学习的革命性突破&#x…

C语言_数据结构总结9:树的基础知识介绍

1. 树的基本术语 - 祖先&#xff1a;考虑结点K&#xff0c;从根A到结点K的唯一路径上的所有其它结点&#xff0c;称为结点K的祖先。 - 子孙&#xff1a;结点B是结点K的祖先&#xff0c;结点K是B的子孙。结点B的子孙包括&#xff1a;E,F,K,L。 - 双亲&#xff1a;路径上…