前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。
https://www.captainbed.cn/north
文章目录
- 1. 大模型训练概览
- 1.1 训练流程总览
- 1.2 关键技术指标
- 2. 数据准备
- 2.1 数据收集与清洗
- 2.2 数据预处理
- 3. 模型设计
- 3.1 模型架构
- 3.2 模型初始化
- 4. 分布式训练
- 4.1 数据并行
- 4.2 模型并行
- 5. 优化与调参
- 5.1 优化器选择
- 5.2 学习率调度
- 5.3 损失函数
- 6. 训练循环
- 6.1 单机训练
- 6.2 分布式训练
- 7. 模型评估
- 7.1 评估指标
- 7.2 模型保存
- 8. 部署应用
- 8.1 模型加载
- 8.2 推理服务
- 9. 性能优化
- 9.1 混合精度训练
- 9.2 梯度累积
- 10. 扩展阅读
1. 大模型训练概览
1.1 训练流程总览
1.2 关键技术指标
指标 | 描述 | 典型值 |
---|---|---|
参数量 | 模型复杂度 | 10亿-1000亿 |
训练数据量 | 数据规模 | TB 级别 |
训练时间 | 计算资源需求 | 天-月级别 |
硬件需求 | GPU/TPU 数量 | 数百-数千 |
2. 数据准备
2.1 数据收集与清洗
import pandas as pd
# 数据加载
data = pd.read_csv('raw_data.csv')
# 数据清洗
data = data.dropna() # 去除空值
data = data.drop_duplicates() # 去重
# 数据保存
data.to_csv('cleaned_data.csv', index=False)
2.2 数据预处理
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 特征与标签分离
X = data.drop('target', axis=1)
y = data['target']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 特征标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
3. 模型设计
3.1 模型架构
import torch
import torch.nn as nn
class BigModel(nn.Module):
def __init__(self):
super(BigModel, self).__init__()
self.fc1 = nn.Linear(1000, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, 10)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.dropout(x)
x = self.relu(self.fc2(x))
x = self.dropout(x)
x = self.fc3(x)
return x
3.2 模型初始化
model = BigModel()
print(model)
4. 分布式训练
4.1 数据并行
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
# 初始化进程组
dist.init_process_group(backend='nccl')
# 包装模型
model = DDP(model)
4.2 模型并行
from torch.distributed.pipeline.sync import Pipe
# 模型分割
model_part1 = nn.Sequential(model.fc1, model.relu, model.dropout)
model_part2 = nn.Sequential(model.fc2, model.relu, model.dropout, model.fc3)
# 管道并行
model = Pipe(model_part1, model_part2, chunks=8)
5. 优化与调参
5.1 优化器选择
import torch.optim as optim
optimizer = optim.Adam(model.parameters(), lr=0.001)
5.2 学习率调度
from torch.optim.lr_scheduler import StepLR
scheduler = StepLR(optimizer, step_size=30, gamma=0.1)
5.3 损失函数
criterion = nn.CrossEntropyLoss()
6. 训练循环
6.1 单机训练
for epoch in range(100):
model.train()
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
6.2 分布式训练
for epoch in range(100):
model.train()
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
scheduler.step()
7. 模型评估
7.1 评估指标
from sklearn.metrics import accuracy_score, f1_score
model.eval()
with torch.no_grad():
outputs = model(X_test)
_, predicted = torch.max(outputs.data, 1)
accuracy = accuracy_score(y_test, predicted)
f1 = f1_score(y_test, predicted, average='weighted')
print(f'Accuracy: {accuracy}, F1 Score: {f1}')
7.2 模型保存
torch.save(model.state_dict(), 'big_model.pth')
8. 部署应用
8.1 模型加载
model.load_state_dict(torch.load('big_model.pth'))
8.2 推理服务
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/predict', methods=['POST'])
def predict():
data = request.json['data']
data = torch.tensor(data).float()
output = model(data)
return jsonify(output.tolist())
if __name__ == '__main__':
app.run(host='0.0.0.0', port=5000)
9. 性能优化
9.1 混合精度训练
from torch.cuda.amp import GradScaler, autocast
scaler = GradScaler()
for epoch in range(100):
model.train()
for data, target in train_loader:
optimizer.zero_grad()
with autocast():
output = model(data)
loss = criterion(output, target)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
9.2 梯度累积
accumulation_steps = 4
for epoch in range(100):
model.train()
optimizer.zero_grad()
for i, (data, target) in enumerate(train_loader):
output = model(data)
loss = criterion(output, target)
loss = loss / accumulation_steps
loss.backward()
if (i + 1) % accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
scheduler.step()
10. 扩展阅读
- PyTorch 官方文档
- 分布式训练指南
- 大模型训练最佳实践
通过本文的深度解析,开发者可以全面掌握大模型训练的全流程与关键技术。建议结合实际项目需求,合理配置训练资源,以提升模型性能与训练效率。