【YOLOv8】YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2

news2025/3/11 20:57:44

主页:HABUO🍁主页:HABUO

🍁YOLOv8入门+改进专栏🍁

🍁如果再也不能见到你,祝你早安,午安,晚安🍁


 【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck


目录

💯一、EfficientFormerV2介绍

1. 简介

2. EfficientFormerV2 的设计

2.1 网络架构设计

2.2 网络架构示意图

2.3 关键设计选择的性能对比

3. 实验结果

3.1 ImageNet-1K 分类

3.2 下游任务

4. 关键结论

💯二、具体添加方法 

第①步:创建EfficientFormerV2.py

第②步:修改task.py 

(1)引入创建的EfficientFormerV2文件 

(2)修改_predict_once函数 

(3)修改parse_model函数

第③步:yolov8.yaml文件修改   

第④步:验证是否加入成功   


💯一、EfficientFormerV2介绍

  • 论文题目:《Rethinking Vision Transformers for MobileNet Size and Speed》
  • 论文地址:https://arxiv.org/pdf/2212.08059v1

1. 简介

这篇论文介绍了一种名为 EfficientFormerV2 的新型高效视觉模型,旨在解决如何在移动设备上实现与 MobileNet 相当的模型大小和推理速度的同时,达到与 Vision Transformers (ViTs) 相似的高性能。

论文的核心目标是探索是否可以设计出一种 Transformer 模型,使其在移动设备上的推理速度和模型大小与 MobileNet 相当,同时保持高性能。为此,作者提出了 EfficientFormerV2,并通过以下方法实现这一目标:

  1. 重新审视 ViTs 的设计选择,提出一种低延迟、高参数效率的改进型超网络(supernet)。

  2. 引入一种细粒度的联合搜索策略,同时优化模型的延迟和参数数量,以找到高效的架构。


2. EfficientFormerV2 的设计

2.1 网络架构设计

EfficientFormerV2 的设计基于以下关键改进:

  • 统一的前馈网络(FFN):将局部信息建模模块(如池化层)替换为深度可分离卷积(DWCONV),并将其集成到 FFN 中,简化了网络结构。

  • 多头自注意力(MHSA)改进:通过在 Value 矩阵中注入局部信息,并引入 Talking Head 机制,提升注意力模块的性能。

  • 高效的注意力机制:通过“Stride Attention”方法,将高分辨率特征的注意力计算简化为固定分辨率,从而减少计算复杂度。

  • 注意力下采样:结合局部和全局信息的下采样策略,进一步优化性能。

2.2 网络架构示意图

EfficientFormerV2 的网络架构分为四个阶段,分别处理不同分辨率的特征(1/4、1/8、1/16 和 1/32)。前两个阶段主要使用统一的 FFN 捕获局部信息,后两个阶段结合局部 FFN 和全局 MHSA 模块,以平衡局部和全局信息的建模。

2.3 关键设计选择的性能对比

论文通过实验验证了不同设计选择对性能的影响,例如:

  • 统一的 FFN 设计相比基线模型提升了 0.6% 的准确率,且没有增加延迟。

  • 引入 Talking Head 和局部信息建模后,准确率进一步提升至 80.8%,同时保持参数和延迟不变。

  • 通过 Stride Attention 和注意力下采样,模型在高分辨率特征上的性能和效率得到显著提升。


3. 实验结果

3.1 ImageNet-1K 分类

EfficientFormerV2 在 ImageNet-1K 数据集上进行了广泛的实验,结果表明:

  • EfficientFormerV2-S0 在与 MobileNetV2 相同的延迟和参数量下,Top-1 准确率高出 3.9%。

  • EfficientFormerV2-S1 在与 MobileNetV2×1.4 相当的延迟下,准确率高出 4.3%,且模型大小减少了 2倍。

  • EfficientFormerV2-L 在较大的模型规模下,达到了与 EfficientFormer-L7 相同的准确率,但模型大小减少了 3.1倍。

此外,EfficientFormerV2 在 iPhone 12 和 Pixel 6 等移动设备上的推理延迟表现出色,证明了其在实际应用中的高效性。

3.2 下游任务

EfficientFormerV2 还在目标检测、实例分割和语义分割等下游任务中进行了验证:

  • 在 MS COCO 数据集上,EfficientFormerV2-L 在与 EfficientFormer-L3 相同的模型大小下,检测和分割性能分别提升了 3.3 APbox 和 2.3 APmask。

  • 在 ADE20K 数据集上,EfficientFormerV2-S2 的语义分割性能(mIoU)比 PoolFormer-S12 高出 5.2%,证明了其作为特征提取器的有效性。


4. 关键结论

EfficientFormerV2 通过重新审视 ViTs 的设计选择,并引入细粒度的联合搜索算法,成功实现了在移动设备上与 MobileNet 相当的模型大小和推理速度,同时保持了高性能。这一成果为在资源受限的硬件上部署 Transformer 模型提供了新的思路,并为未来的研究提供了有价值的参考。


💯二、具体添加方法 

第①步:创建EfficientFormerV2.py

创建完成后,将下面代码直接复制粘贴进去:

import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict
import itertools
import numpy as np
from timm.models.layers import DropPath, trunc_normal_, to_2tuple

__all__ = ['efficientformerv2_s0', 'efficientformerv2_s1', 'efficientformerv2_s2', 'efficientformerv2_l']

EfficientFormer_width = {
    'L': [40, 80, 192, 384],  # 26m 83.3% 6attn
    'S2': [32, 64, 144, 288],  # 12m 81.6% 4attn dp0.02
    'S1': [32, 48, 120, 224],  # 6.1m 79.0
    'S0': [32, 48, 96, 176],  # 75.0 75.7
}

EfficientFormer_depth = {
    'L': [5, 5, 15, 10],  # 26m 83.3%
    'S2': [4, 4, 12, 8],  # 12m
    'S1': [3, 3, 9, 6],  # 79.0
    'S0': [2, 2, 6, 4],  # 75.7
}

# 26m
expansion_ratios_L = {
    '0': [4, 4, 4, 4, 4],
    '1': [4, 4, 4, 4, 4],
    '2': [4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
    '3': [4, 4, 4, 3, 3, 3, 3, 4, 4, 4],
}

# 12m
expansion_ratios_S2 = {
    '0': [4, 4, 4, 4],
    '1': [4, 4, 4, 4],
    '2': [4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
    '3': [4, 4, 3, 3, 3, 3, 4, 4],
}

# 6.1m
expansion_ratios_S1 = {
    '0': [4, 4, 4],
    '1': [4, 4, 4],
    '2': [4, 4, 3, 3, 3, 3, 4, 4, 4],
    '3': [4, 4, 3, 3, 4, 4],
}

# 3.5m
expansion_ratios_S0 = {
    '0': [4, 4],
    '1': [4, 4],
    '2': [4, 3, 3, 3, 4, 4],
    '3': [4, 3, 3, 4],
}


class Attention4D(torch.nn.Module):
    def __init__(self, dim=384, key_dim=32, num_heads=8,
                 attn_ratio=4,
                 resolution=7,
                 act_layer=nn.ReLU,
                 stride=None):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads

        if stride is not None:
            self.resolution = math.ceil(resolution / stride)
            self.stride_conv = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=stride, padding=1, groups=dim),
                                             nn.BatchNorm2d(dim), )
            self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
        else:
            self.resolution = resolution
            self.stride_conv = None
            self.upsample = None

        self.N = self.resolution ** 2
        self.N2 = self.N
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2
        self.q = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
                               nn.BatchNorm2d(self.num_heads * self.key_dim), )
        self.k = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
                               nn.BatchNorm2d(self.num_heads * self.key_dim), )
        self.v = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.d, 1),
                               nn.BatchNorm2d(self.num_heads * self.d),
                               )
        self.v_local = nn.Sequential(nn.Conv2d(self.num_heads * self.d, self.num_heads * self.d,
                                               kernel_size=3, stride=1, padding=1, groups=self.num_heads * self.d),
                                     nn.BatchNorm2d(self.num_heads * self.d), )
        self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1, stride=1, padding=0)
        self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1, stride=1, padding=0)

        self.proj = nn.Sequential(act_layer(),
                                  nn.Conv2d(self.dh, dim, 1),
                                  nn.BatchNorm2d(dim), )

        points = list(itertools.product(range(self.resolution), range(self.resolution)))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N))

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x (B,N,C)
        B, C, H, W = x.shape
        if self.stride_conv is not None:
            x = self.stride_conv(x)

        q = self.q(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
        k = self.k(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
        v = self.v(x)
        v_local = self.v_local(v)
        v = v.flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)

        attn = (
                (q @ k) * self.scale
                +
                (self.attention_biases[:, self.attention_bias_idxs]
                 if self.training else self.ab)
        )
        # attn = (q @ k) * self.scale
        attn = self.talking_head1(attn)
        attn = attn.softmax(dim=-1)
        attn = self.talking_head2(attn)

        x = (attn @ v)

        out = x.transpose(2, 3).reshape(B, self.dh, self.resolution, self.resolution) + v_local
        if self.upsample is not None:
            out = self.upsample(out)

        out = self.proj(out)
        return out


def stem(in_chs, out_chs, act_layer=nn.ReLU):
    return nn.Sequential(
        nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1),
        nn.BatchNorm2d(out_chs // 2),
        act_layer(),
        nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1),
        nn.BatchNorm2d(out_chs),
        act_layer(),
    )


class LGQuery(torch.nn.Module):
    def __init__(self, in_dim, out_dim, resolution1, resolution2):
        super().__init__()
        self.resolution1 = resolution1
        self.resolution2 = resolution2
        self.pool = nn.AvgPool2d(1, 2, 0)
        self.local = nn.Sequential(nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim),
                                   )
        self.proj = nn.Sequential(nn.Conv2d(in_dim, out_dim, 1),
                                  nn.BatchNorm2d(out_dim), )

    def forward(self, x):
        local_q = self.local(x)
        pool_q = self.pool(x)
        q = local_q + pool_q
        q = self.proj(q)
        return q


class Attention4DDownsample(torch.nn.Module):
    def __init__(self, dim=384, key_dim=16, num_heads=8,
                 attn_ratio=4,
                 resolution=7,
                 out_dim=None,
                 act_layer=None,
                 ):
        super().__init__()

        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads

        self.resolution = resolution

        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2

        if out_dim is not None:
            self.out_dim = out_dim
        else:
            self.out_dim = dim
        self.resolution2 = math.ceil(self.resolution / 2)
        self.q = LGQuery(dim, self.num_heads * self.key_dim, self.resolution, self.resolution2)

        self.N = self.resolution ** 2
        self.N2 = self.resolution2 ** 2

        self.k = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
                               nn.BatchNorm2d(self.num_heads * self.key_dim), )
        self.v = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.d, 1),
                               nn.BatchNorm2d(self.num_heads * self.d),
                               )
        self.v_local = nn.Sequential(nn.Conv2d(self.num_heads * self.d, self.num_heads * self.d,
                                               kernel_size=3, stride=2, padding=1, groups=self.num_heads * self.d),
                                     nn.BatchNorm2d(self.num_heads * self.d), )

        self.proj = nn.Sequential(
            act_layer(),
            nn.Conv2d(self.dh, self.out_dim, 1),
            nn.BatchNorm2d(self.out_dim), )

        points = list(itertools.product(range(self.resolution), range(self.resolution)))
        points_ = list(itertools.product(
            range(self.resolution2), range(self.resolution2)))
        N = len(points)
        N_ = len(points_)
        attention_offsets = {}
        idxs = []
        for p1 in points_:
            for p2 in points:
                size = 1
                offset = (
                    abs(p1[0] * math.ceil(self.resolution / self.resolution2) - p2[0] + (size - 1) / 2),
                    abs(p1[1] * math.ceil(self.resolution / self.resolution2) - p2[1] + (size - 1) / 2))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N_, N))

    @torch.no_grad()
    def train(self, mode=True):
        super().train(mode)
        if mode and hasattr(self, 'ab'):
            del self.ab
        else:
            self.ab = self.attention_biases[:, self.attention_bias_idxs]

    def forward(self, x):  # x (B,N,C)
        B, C, H, W = x.shape

        q = self.q(x).flatten(2).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2)
        k = self.k(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
        v = self.v(x)
        v_local = self.v_local(v)
        v = v.flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)

        attn = (
                (q @ k) * self.scale
                +
                (self.attention_biases[:, self.attention_bias_idxs]
                 if self.training else self.ab)
        )

        # attn = (q @ k) * self.scale
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(2, 3)
        out = x.reshape(B, self.dh, self.resolution2, self.resolution2) + v_local

        out = self.proj(out)
        return out


class Embedding(nn.Module):
    def __init__(self, patch_size=3, stride=2, padding=1,
                 in_chans=3, embed_dim=768, norm_layer=nn.BatchNorm2d,
                 light=False, asub=False, resolution=None, act_layer=nn.ReLU, attn_block=Attention4DDownsample):
        super().__init__()
        self.light = light
        self.asub = asub

        if self.light:
            self.new_proj = nn.Sequential(
                nn.Conv2d(in_chans, in_chans, kernel_size=3, stride=2, padding=1, groups=in_chans),
                nn.BatchNorm2d(in_chans),
                nn.Hardswish(),
                nn.Conv2d(in_chans, embed_dim, kernel_size=1, stride=1, padding=0),
                nn.BatchNorm2d(embed_dim),
            )
            self.skip = nn.Sequential(
                nn.Conv2d(in_chans, embed_dim, kernel_size=1, stride=2, padding=0),
                nn.BatchNorm2d(embed_dim)
            )
        elif self.asub:
            self.attn = attn_block(dim=in_chans, out_dim=embed_dim,
                                   resolution=resolution, act_layer=act_layer)
            patch_size = to_2tuple(patch_size)
            stride = to_2tuple(stride)
            padding = to_2tuple(padding)
            self.conv = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
                                  stride=stride, padding=padding)
            self.bn = norm_layer(embed_dim) if norm_layer else nn.Identity()
        else:
            patch_size = to_2tuple(patch_size)
            stride = to_2tuple(stride)
            padding = to_2tuple(padding)
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
                                  stride=stride, padding=padding)
            self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()

    def forward(self, x):
        if self.light:
            out = self.new_proj(x) + self.skip(x)
        elif self.asub:
            out_conv = self.conv(x)
            out_conv = self.bn(out_conv)
            out = self.attn(x) + out_conv
        else:
            x = self.proj(x)
            out = self.norm(x)
        return out


class Mlp(nn.Module):
    """
    Implementation of MLP with 1*1 convolutions.
    Input: tensor with shape [B, C, H, W]
    """

    def __init__(self, in_features, hidden_features=None,
                 out_features=None, act_layer=nn.GELU, drop=0., mid_conv=False):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.mid_conv = mid_conv
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)

        if self.mid_conv:
            self.mid = nn.Conv2d(hidden_features, hidden_features, kernel_size=3, stride=1, padding=1,
                                 groups=hidden_features)
            self.mid_norm = nn.BatchNorm2d(hidden_features)

        self.norm1 = nn.BatchNorm2d(hidden_features)
        self.norm2 = nn.BatchNorm2d(out_features)

    def _init_weights(self, m):
        if isinstance(m, nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.fc1(x)
        x = self.norm1(x)
        x = self.act(x)

        if self.mid_conv:
            x_mid = self.mid(x)
            x_mid = self.mid_norm(x_mid)
            x = self.act(x_mid)
        x = self.drop(x)

        x = self.fc2(x)
        x = self.norm2(x)

        x = self.drop(x)
        return x


class AttnFFN(nn.Module):
    def __init__(self, dim, mlp_ratio=4.,
                 act_layer=nn.ReLU, norm_layer=nn.LayerNorm,
                 drop=0., drop_path=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5,
                 resolution=7, stride=None):

        super().__init__()

        self.token_mixer = Attention4D(dim, resolution=resolution, act_layer=act_layer, stride=stride)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop, mid_conv=True)

        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(x))
            x = x + self.drop_path(self.layer_scale_2 * self.mlp(x))

        else:
            x = x + self.drop_path(self.token_mixer(x))
            x = x + self.drop_path(self.mlp(x))
        return x


class FFN(nn.Module):
    def __init__(self, dim, pool_size=3, mlp_ratio=4.,
                 act_layer=nn.GELU,
                 drop=0., drop_path=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5):
        super().__init__()

        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop, mid_conv=True)

        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(self.layer_scale_2 * self.mlp(x))
        else:
            x = x + self.drop_path(self.mlp(x))
        return x


def eformer_block(dim, index, layers,
                  pool_size=3, mlp_ratio=4.,
                  act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                  drop_rate=.0, drop_path_rate=0.,
                  use_layer_scale=True, layer_scale_init_value=1e-5, vit_num=1, resolution=7, e_ratios=None):
    blocks = []
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (
                block_idx + sum(layers[:index])) / (sum(layers) - 1)
        mlp_ratio = e_ratios[str(index)][block_idx]
        if index >= 2 and block_idx > layers[index] - 1 - vit_num:
            if index == 2:
                stride = 2
            else:
                stride = None
            blocks.append(AttnFFN(
                dim, mlp_ratio=mlp_ratio,
                act_layer=act_layer, norm_layer=norm_layer,
                drop=drop_rate, drop_path=block_dpr,
                use_layer_scale=use_layer_scale,
                layer_scale_init_value=layer_scale_init_value,
                resolution=resolution,
                stride=stride,
            ))
        else:
            blocks.append(FFN(
                dim, pool_size=pool_size, mlp_ratio=mlp_ratio,
                act_layer=act_layer,
                drop=drop_rate, drop_path=block_dpr,
                use_layer_scale=use_layer_scale,
                layer_scale_init_value=layer_scale_init_value,
            ))
    blocks = nn.Sequential(*blocks)
    return blocks


class EfficientFormerV2(nn.Module):
    def __init__(self, layers, embed_dims=None,
                 mlp_ratios=4, downsamples=None,
                 pool_size=3,
                 norm_layer=nn.BatchNorm2d, act_layer=nn.GELU,
                 num_classes=1000,
                 down_patch_size=3, down_stride=2, down_pad=1,
                 drop_rate=0., drop_path_rate=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5,
                 fork_feat=True,
                 vit_num=0,
                 resolution=640,
                 e_ratios=expansion_ratios_L,
                 **kwargs):
        super().__init__()

        if not fork_feat:
            self.num_classes = num_classes
        self.fork_feat = fork_feat

        self.patch_embed = stem(3, embed_dims[0], act_layer=act_layer)

        network = []
        for i in range(len(layers)):
            stage = eformer_block(embed_dims[i], i, layers,
                                  pool_size=pool_size, mlp_ratio=mlp_ratios,
                                  act_layer=act_layer, norm_layer=norm_layer,
                                  drop_rate=drop_rate,
                                  drop_path_rate=drop_path_rate,
                                  use_layer_scale=use_layer_scale,
                                  layer_scale_init_value=layer_scale_init_value,
                                  resolution=math.ceil(resolution / (2 ** (i + 2))),
                                  vit_num=vit_num,
                                  e_ratios=e_ratios)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
                # downsampling between two stages
                if i >= 2:
                    asub = True
                else:
                    asub = False
                network.append(
                    Embedding(
                        patch_size=down_patch_size, stride=down_stride,
                        padding=down_pad,
                        in_chans=embed_dims[i], embed_dim=embed_dims[i + 1],
                        resolution=math.ceil(resolution / (2 ** (i + 2))),
                        asub=asub,
                        act_layer=act_layer, norm_layer=norm_layer,
                    )
                )

        self.network = nn.ModuleList(network)

        if self.fork_feat:
            # add a norm layer for each output
            self.out_indices = [0, 2, 4, 6]
            for i_emb, i_layer in enumerate(self.out_indices):
                if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                    layer = nn.Identity()
                else:
                    layer = norm_layer(embed_dims[i_emb])
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, resolution, resolution))]
        
    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs

    def forward(self, x):
        x = self.patch_embed(x)
        x = self.forward_tokens(x)
        return x

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def efficientformerv2_s0(weights='', **kwargs):
    model = EfficientFormerV2(
        layers=EfficientFormer_depth['S0'],
        embed_dims=EfficientFormer_width['S0'],
        downsamples=[True, True, True, True, True],
        vit_num=2,
        drop_path_rate=0.0,
        e_ratios=expansion_ratios_S0,
        **kwargs)
    if weights:
        pretrained_weight = torch.load(weights)['model']
        model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
    return model

def efficientformerv2_s1(weights='', **kwargs):
    model = EfficientFormerV2(
        layers=EfficientFormer_depth['S1'],
        embed_dims=EfficientFormer_width['S1'],
        downsamples=[True, True, True, True],
        vit_num=2,
        drop_path_rate=0.0,
        e_ratios=expansion_ratios_S1,
        **kwargs)
    if weights:
        pretrained_weight = torch.load(weights)['model']
        model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
    return model

def efficientformerv2_s2(weights='', **kwargs):
    model = EfficientFormerV2(
        layers=EfficientFormer_depth['S2'],
        embed_dims=EfficientFormer_width['S2'],
        downsamples=[True, True, True, True],
        vit_num=4,
        drop_path_rate=0.02,
        e_ratios=expansion_ratios_S2,
        **kwargs)
    if weights:
        pretrained_weight = torch.load(weights)['model']
        model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
    return model

def efficientformerv2_l(weights='', **kwargs):
    model = EfficientFormerV2(
        layers=EfficientFormer_depth['L'],
        embed_dims=EfficientFormer_width['L'],
        downsamples=[True, True, True, True],
        vit_num=6,
        drop_path_rate=0.1,
        e_ratios=expansion_ratios_L,
        **kwargs)
    if weights:
        pretrained_weight = torch.load(weights)['model']
        model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
    return model

if __name__ == '__main__':
    inputs = torch.randn((1, 3, 640, 640))
    
    model = efficientformerv2_s0('eformer_s0_450.pth')
    res = model(inputs)
    for i in res:
        print(i.size())
    
    model = efficientformerv2_s1('eformer_s1_450.pth')
    res = model(inputs)
    for i in res:
        print(i.size())
    
    model = efficientformerv2_s2('eformer_s2_450.pth')
    res = model(inputs)
    for i in res:
        print(i.size())
    
    model = efficientformerv2_l('eformer_l_450.pth')
    res = model(inputs)
    for i in res:
        print(i.size())

第②步:修改task.py 

(1)引入创建的EfficientFormerV2文件 

from ultralytics.nn.backbone.EfficientFormerV2 import *

(2)修改_predict_once函数 

def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for idx, m in enumerate(self.model):
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            
            # if type(x) in {list, tuple}:
            #     if idx == (len(self.model) - 1):
            #         if type(x[1]) is dict:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')
            #         else:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')
            #     else:
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
            # elif type(x) is dict:
            #     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')
            # else:
            #     if not hasattr(m, 'backbone'):
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')
            
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明

def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast
 
    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        if len(scales[scale]) == 3:
            depth, width, max_channels = scales[scale]
        elif len(scales[scale]) == 4:
            depth, width, max_channels, threshold = scales[scale]
 
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
 
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a
        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, 
            C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
            C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
            C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
            DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
            OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
            C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
            C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
            C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
            C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
            C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
            C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
            C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
            C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
            C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
            C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
            C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
            C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
            C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
            C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
            C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
            C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
            C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
            MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
        }:
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads
 
            args = [c1, c2, *args[1:]]
            if m in (KWConv, C2f_KW, C3_KW):
                args.insert(2, f'layer{i}')
                args.insert(2, warehouse_manager)
            if m in (DySnakeConv,):
                c2 = c2 * 3
            if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in {
                     BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
                     VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
                     C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
                     C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
                     C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, 
                     C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
                     C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
                     C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
                     C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
                     C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
                     C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
                     C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
                     C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
                     C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
                     C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
                     C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
                     C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
                     C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
                     C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
                     MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
                     }:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in {AIFI, AIFI_RepBN}:
            args = [ch[f], *args]
            c2 = args[0]
        elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
            c1, cm, c2 = ch[f], args[0], args[1]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
                cm = make_divisible(min(cm, max_channels) * width, 8)
            args = [c1, cm, c2, *args[2:]]
            if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
            args.append([ch[x] for x in f])
            if m in SEGMENT_CLASS:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
                    args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
                args[1] = make_divisible(min(args[1], max_channels) * width, 8)
            if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is Fusion:
            args[0] = d[args[0]]
            c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
            args = [c1, args[0]]
        elif m is CBLinear:
            c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
            c1 = ch[f]
            args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        elif isinstance(m, str):
            t = m
            if len(args) == 2:        
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
                   fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
                   EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
                   efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
                   vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
                   RevCol,
                   lsknet_t, lsknet_s,
                   SwinTransformer_Tiny,
                   repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
                   CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
                   unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
                   transnext_micro, transnext_tiny, transnext_small, transnext_base,
                   RMT_T, RMT_S, RMT_B, RMT_L,
                   PKINET_T, PKINET_S, PKINET_B,
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
                   starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
                   }:
            if m is RevCol:
                args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
                args[2] = [max(round(k * depth), 1) for k in args[2]]
            m = m(*args)
            c2 = m.channel
        elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
                   TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
                   SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
                   EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
                   FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, 
                   DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
            c2 = ch[f]
            args = [c2, *args]
            # print(args)
        elif m in {SimAM, SpatialGroupEnhance}:
            c2 = ch[f]
        elif m is ContextGuidedBlock_Down:
            c2 = ch[f] * 2
            args = [ch[f], c2, *args]
        elif m is BiFusion:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [c1, c2]
        # --------------GOLD-YOLO--------------
        elif m in {SimFusion_4in, AdvPoolFusion}:
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is TopBasicLayer:
            c2 = sum(args[1])
        # --------------GOLD-YOLO--------------
        # --------------ASF--------------
        elif m is Zoom_cat:
            c2 = sum(ch[x] for x in f)
        elif m is Add:
            c2 = ch[f[-1]]
        elif m in {ScalSeq, DynamicScalSeq}:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(args[0] * width, 8)
            args = [c1, c2]
        elif m is asf_attention_model:
            args = [ch[f[-1]]]
        # --------------ASF--------------
        elif m is SDI:
            args = [[ch[x] for x in f]]
        elif m is Multiply:
            c2 = ch[f[0]]
        elif m is FocusFeature:
            c1 = [ch[x] for x in f]
            c2 = int(c1[1] * 0.5 * 3)
            args = [c1, *args]
        elif m is DASI:
            c1 = [ch[x] for x in f]
            args = [c1, c2]
        elif m is CSMHSA:
            c1 = [ch[x] for x in f]
            c2 = ch[f[-1]]
            args = [c1, c2]
        elif m is CFC_CRB:
            c1 = ch[f]
            c2 = c1 // 2
            args = [c1, *args]
        elif m is SFC_G2:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
            c2 = ch[f[1]]
            args = [c2, *args]
        elif m in {ContextGuideFusionModule}:
            c1 = [ch[x] for x in f]
            c2 = 2 * c1[1]
            args = [c1]
        # elif m in {PSA}:
        #     c2 = ch[f]
        #     args = [c2, *args]
        elif m in {SBA}:
            c1 = [ch[x] for x in f]
            c2 = c1[-1]
            args = [c1, c2]
        elif m in {WaveletPool}:
            c2 = ch[f] * 4
        elif m in {WaveletUnPool}:
            c2 = ch[f] // 4
        elif m in {CSPOmniKernel}:
            c2 = ch[f]
            args = [c2]
        elif m in {ChannelTransformer, PyramidContextExtraction}:
            c1 = [ch[x] for x in f]
            c2 = c1
            args = [c1]
        elif m in {RCM}:
            c2 = ch[f]
            args = [c2, *args]
        elif m in {DynamicInterpolationFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f]]
        elif m in {FuseBlockMulti}:
            c2 = ch[f[0]]
            args = [c2]
        elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
            c2 = [ch[x] for x in f]
            args = [c2[0], *args]
        elif m in {FreqFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f], *args]
        elif m in {DynamicAlignFusion}:
            c2 = args[0]
            args = [[ch[x] for x in f], c2]
        elif m in {ConvEdgeFusion}:
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [[ch[x] for x in f], c2]
        elif m in {MutilScaleEdgeInfoGenetator}:
            c1 = ch[f]
            c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
            args = [c1, c2]
        elif m in {MultiScaleGatedAttn}:
            c1 = [ch[x] for x in f]
            c2 = min(c1)
            args = [c1]
        elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {GetIndexOutput}:
            c2 = ch[f][args[0]]
        elif m is HyperComputeModule:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, threshold]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改   

在下述文件夹中创立yolov8-EfficientFormerV2.yaml

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, efficientformerv2_s0, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功   

将train.py中的配置文件进行修改,并运行  


🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋

🍁YOLOv8入门+改进专栏🍁


 【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2313394.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

北大一二三四版全套DeepSeek教学资料

DeepSeek学习资料合集&#xff1a;https://pan.quark.cn/s/bb6ebf0e9b4d DeepSeek实操变现指南&#xff1a;https://pan.quark.cn/s/76328991eaa2 你是否渴望深入探索人工智能的前沿领域&#xff1f;是否在寻找一份能引领你从理论到实践&#xff0c;全面掌握AI核心技术的学习…

【大模型】WPS 接入 DeepSeek-R1详解,打造全能AI办公助手

目录 一、前言 二、WPS接入AI工具优势​​​​​​​ 三、WPS接入AI工具两种方式 3.1 手动配置的方式 3.2 Office AI助手 四、WPS手动配置方式接入AI大模型 4.1 安装VBA插件 4.1.1 下载VBA插件并安装 4.2 配置WPS 4.3 WPS集成VB 4.4 AI助手效果测试 4.5 配置模板文…

STM32步进电机驱动全解析(上) | 零基础入门STM32第五十七步

主题内容教学目的/扩展视频步进电机电路原理&#xff0c;跳线设置&#xff0c;驱动程序&#xff0c;调用控制。熟悉驱动程序&#xff0c;能调用控制。 师从洋桃电子&#xff0c;杜洋老师 &#x1f4d1;文章目录 一、步进电机核心原理图解二、核心特性与优势三、关键驱动方式对比…

[NewStarCTF 2023 公开赛道]ez_sql1 【sqlmap使用/大小写绕过】

题目&#xff1a; 发现id处可以sql注入&#xff1a; 虽然输入id1;show databases;#没什么回显&#xff0c;但是知道这里是字符型注入了 这次利用sqlmap注入 --dbs&#xff1a;列出所有数据库名字 python .\sqlmap.py -u http://a40b2f0a-823f-4c99-b43c-08b94ed0abb2.node5.…

新能源汽车充电综合解决方案:安科瑞电气助力绿色出行

安科瑞 华楠 18706163979 随着新能源汽车的迅猛发展&#xff0c;充电基础设施的建设成为了推动行业进步的关键。然而&#xff0c;充电技术滞后、运营效率低下、车桩比失衡等问题&#xff0c;依然困扰着广大车主和运营商。今天&#xff0c;我们要为大家介绍一款新能源汽车充电…

蓝桥杯java-B组真题—动态规划

目录 一.什么是动态规划? 二.题目 第一种情况:集合本身之和为奇数 第二种情况:集合本身之和为偶数 下面是代码实现: 一.什么是动态规划? 这里就简单的解释一下&#xff0c;动态规划就是记录之前的计算结果&#xff0c;避免重复的计算之前已经计算过的结果&#xff0c;用…

网易邮箱如何用大数据任务调度实现海量邮件数据处理?Apache DolphinScheduler用户交流会上来揭秘!

你是否对大数据领域的前沿应用充满好奇&#xff1f;网易邮箱作为互联网大厂网易的重要业务线&#xff0c;在大数据应用方面有着诸多值得借鉴的实践经验。你是否渴望深入了解网易邮箱如何借助 Apache DolphinScheduler 实现海量邮件数据处理、用户行为分析、实时监控等核心业务场…

前端知识点---路由模式-实例模式和单例模式(ts)

在 ArkTS&#xff08;Ark UI 框架&#xff09;中&#xff0c;路由实例模式&#xff08;Standard Instance Mode&#xff09;主要用于管理页面跳转。当创建一个新页面时&#xff0c;可以选择标准实例模式&#xff08;Standard Mode&#xff09;或单实例模式&#xff08;Single M…

固定表头、首列 —— uniapp、vue 项目

项目实地&#xff1a;也可以在 【微信小程序】搜索体验&#xff1a;xny.handbook 另一个体验项目&#xff1a;官网 一、效果展示 二、代码展示 &#xff08;1&#xff09;html 部分 <view class"table"><view class"tr"><view class&quo…

langchain系列(九)- LangGraph 子图详解

目录 一、导读 二、原理说明 1、简介 2、子图图示 3、使用说明 三、基础代码实现 1、实现功能 2、Graph 图示 3、代码实现 4、输出 5、分析 四、人机交互 1、实现中断 2、历史状态&#xff08;父图&#xff09; 3、历史状态&#xff08;子图&#xff09; 4、历史…

搜索引擎是如何理解你的查询并提供精准结果的?

目录 一、搜索引擎简单介绍 二、搜索引擎整体架构和工作过程 &#xff08;一&#xff09;整体分析 &#xff08;二&#xff09;爬虫系统 三个基本点 爬虫系统的工作流程 关键考虑因素和挑战 &#xff08;三&#xff09;索引系统 网页处理阶段 预处理阶段 反作弊分析…

IDEA软件安装环境配置中文插件

一、Java环境配置 1. JDK安装8 访问Oracle官网下载JDK8&#xff08;推荐JDK8&#xff0c;11&#xff09;Java Downloads | Oracle 双击安装程序&#xff0c;保持默认设置连续点击"下一步"完成安装 验证JDK安装&#xff0c;winR键 然后输入cmd&#xff0c;输入java…

循环神经网络(RNN):时序建模的核心引擎与演进之路

在人工智能处理序列数据的战场上&#xff0c;循环神经网络&#xff08;RNN&#xff09;如同一个能够理解时间的智者。从 2015 年谷歌神经机器翻译系统颠覆传统方法&#xff0c;到 2023 年 ChatGPT 实现对话连续性&#xff0c;这些突破都植根于 RNN 对时序建模的深刻理解。本文将…

电脑总显示串口正在被占用处理方法

1.现象 在嵌入式开发过程中&#xff0c;有很多情况下要使用串口调试&#xff0c;其中485/422/232转usb串口是非常常见的做法。 根据协议&#xff0c;接口芯片不同&#xff0c;需要安装对应的驱动程序&#xff0c;比如ch340&#xff0c;cp2102&#xff0c;CDM212364等驱动。可…

R语言和RStudio安装

整体还是比较简单的&#xff0c;主要是记录个流程。 官方镜像站列表R语言官网 1 安装R&#xff08;2025/3/6&#xff09; R语言官网&#xff1a;The R Project for Statistical Computing 打开之后就Hello world一下吧 配置环境变量 2 安装RStudio 下载地址&#xff1a;htt…

【C#学习笔记02】基本元素与数据类型

引言 深入了解C语言的基本元素、计算机存储器结构、常量与变量的概念以及数据类型。这些内容是C语言编程的基础&#xff0c;掌握它们对于编写高效、可靠的嵌入式程序至关重要。 1.C语言的基本元素 ​编程语言的发展离不开自然语言&#xff0c;所以编程语言的语法和词汇也是由…

<建模软件安装教程1>Blender4.2系列

Blender4.2安装教程 0注意&#xff1a;Windows环境下安装 第一步&#xff0c;百度网盘提取安装包。百度网盘链接&#xff1a;通过网盘分享的文件&#xff1a;blender.zip 链接: https://pan.baidu.com/s/1OG0jMMtN0qWDSQ6z_rE-9w 提取码: 0309 --来自百度网盘超级会员v3的分…

Docker极简部署开源播放器Splayer结合内网穿透远程流畅在线听歌

前言 嘿&#xff0c;各位音乐发烧友们&#xff01;如果你厌倦了广告的打扰&#xff0c;渴望在忙碌的生活中找到一片宁静的音乐天地&#xff0c;那么今天这篇教程绝对适合你——如何在Ubuntu上用Docker快速搭建一款高颜值、无广告的某抑云音乐播放器Splayer。 Splayer不仅界面…

显示器长时间黑屏

现象 电脑启动后,进入登录界面前会随机黑屏,有时候十几秒,有时候几分钟 进入桌面后,长时间不操作电脑黑屏,移动鼠标,点击键盘后尝试点亮屏幕,也会消耗较长时间 尝试 重装系统,或者重新安装显卡,都能够恢复,但过段时间以后又出现黑屏情况 集成显卡,独立显卡都出现过 操作系统…

内网安全-横向移动PTH 哈希PTT 票据PTK 密匙Kerberos密码喷射

一.域横向pth&#xff0c;mimkatz&#xff0c;NTLM windwos server 2012 R2之前可能是NTLM和LM&#xff0c;之后为NTLM 1.mimkatz ptk 使用mimkatz进行横向移动 mimikatz sekurlsa::pth /user:administrator&#xff08;目标本地用户名&#xff09; /domain:192.168.3.32&a…