主页:HABUO🍁主页:HABUO
🍁YOLOv8入门+改进专栏🍁
🍁如果再也不能见到你,祝你早安,午安,晚安🍁
【YOLOv8改进系列】:
【YOLOv8】YOLOv8结构解读
YOLOv8改进系列(1)----替换主干网络之EfficientViT
YOLOv8改进系列(2)----替换主干网络之FasterNet
YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2
YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck
目录
💯一、EfficientFormerV2介绍
1. 简介
2. EfficientFormerV2 的设计
2.1 网络架构设计
2.2 网络架构示意图
2.3 关键设计选择的性能对比
3. 实验结果
3.1 ImageNet-1K 分类
3.2 下游任务
4. 关键结论
💯二、具体添加方法
第①步:创建EfficientFormerV2.py
第②步:修改task.py
(1)引入创建的EfficientFormerV2文件
(2)修改_predict_once函数
(3)修改parse_model函数
第③步:yolov8.yaml文件修改
第④步:验证是否加入成功
💯一、EfficientFormerV2介绍
- 论文题目:《Rethinking Vision Transformers for MobileNet Size and Speed》
- 论文地址:https://arxiv.org/pdf/2212.08059v1
1. 简介
这篇论文介绍了一种名为 EfficientFormerV2 的新型高效视觉模型,旨在解决如何在移动设备上实现与 MobileNet 相当的模型大小和推理速度的同时,达到与 Vision Transformers (ViTs) 相似的高性能。
论文的核心目标是探索是否可以设计出一种 Transformer 模型,使其在移动设备上的推理速度和模型大小与 MobileNet 相当,同时保持高性能。为此,作者提出了 EfficientFormerV2,并通过以下方法实现这一目标:
-
重新审视 ViTs 的设计选择,提出一种低延迟、高参数效率的改进型超网络(supernet)。
-
引入一种细粒度的联合搜索策略,同时优化模型的延迟和参数数量,以找到高效的架构。
2. EfficientFormerV2 的设计
2.1 网络架构设计
EfficientFormerV2 的设计基于以下关键改进:
-
统一的前馈网络(FFN):将局部信息建模模块(如池化层)替换为深度可分离卷积(DWCONV),并将其集成到 FFN 中,简化了网络结构。
-
多头自注意力(MHSA)改进:通过在 Value 矩阵中注入局部信息,并引入 Talking Head 机制,提升注意力模块的性能。
-
高效的注意力机制:通过“Stride Attention”方法,将高分辨率特征的注意力计算简化为固定分辨率,从而减少计算复杂度。
-
注意力下采样:结合局部和全局信息的下采样策略,进一步优化性能。
2.2 网络架构示意图
EfficientFormerV2 的网络架构分为四个阶段,分别处理不同分辨率的特征(1/4、1/8、1/16 和 1/32)。前两个阶段主要使用统一的 FFN 捕获局部信息,后两个阶段结合局部 FFN 和全局 MHSA 模块,以平衡局部和全局信息的建模。
2.3 关键设计选择的性能对比
论文通过实验验证了不同设计选择对性能的影响,例如:
-
统一的 FFN 设计相比基线模型提升了 0.6% 的准确率,且没有增加延迟。
-
引入 Talking Head 和局部信息建模后,准确率进一步提升至 80.8%,同时保持参数和延迟不变。
-
通过 Stride Attention 和注意力下采样,模型在高分辨率特征上的性能和效率得到显著提升。
3. 实验结果
3.1 ImageNet-1K 分类
EfficientFormerV2 在 ImageNet-1K 数据集上进行了广泛的实验,结果表明:
-
EfficientFormerV2-S0 在与 MobileNetV2 相同的延迟和参数量下,Top-1 准确率高出 3.9%。
-
EfficientFormerV2-S1 在与 MobileNetV2×1.4 相当的延迟下,准确率高出 4.3%,且模型大小减少了 2倍。
-
EfficientFormerV2-L 在较大的模型规模下,达到了与 EfficientFormer-L7 相同的准确率,但模型大小减少了 3.1倍。
此外,EfficientFormerV2 在 iPhone 12 和 Pixel 6 等移动设备上的推理延迟表现出色,证明了其在实际应用中的高效性。
3.2 下游任务
EfficientFormerV2 还在目标检测、实例分割和语义分割等下游任务中进行了验证:
-
在 MS COCO 数据集上,EfficientFormerV2-L 在与 EfficientFormer-L3 相同的模型大小下,检测和分割性能分别提升了 3.3 APbox 和 2.3 APmask。
-
在 ADE20K 数据集上,EfficientFormerV2-S2 的语义分割性能(mIoU)比 PoolFormer-S12 高出 5.2%,证明了其作为特征提取器的有效性。
4. 关键结论
EfficientFormerV2 通过重新审视 ViTs 的设计选择,并引入细粒度的联合搜索算法,成功实现了在移动设备上与 MobileNet 相当的模型大小和推理速度,同时保持了高性能。这一成果为在资源受限的硬件上部署 Transformer 模型提供了新的思路,并为未来的研究提供了有价值的参考。
💯二、具体添加方法
第①步:创建EfficientFormerV2.py
创建完成后,将下面代码直接复制粘贴进去:
import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from typing import Dict
import itertools
import numpy as np
from timm.models.layers import DropPath, trunc_normal_, to_2tuple
__all__ = ['efficientformerv2_s0', 'efficientformerv2_s1', 'efficientformerv2_s2', 'efficientformerv2_l']
EfficientFormer_width = {
'L': [40, 80, 192, 384], # 26m 83.3% 6attn
'S2': [32, 64, 144, 288], # 12m 81.6% 4attn dp0.02
'S1': [32, 48, 120, 224], # 6.1m 79.0
'S0': [32, 48, 96, 176], # 75.0 75.7
}
EfficientFormer_depth = {
'L': [5, 5, 15, 10], # 26m 83.3%
'S2': [4, 4, 12, 8], # 12m
'S1': [3, 3, 9, 6], # 79.0
'S0': [2, 2, 6, 4], # 75.7
}
# 26m
expansion_ratios_L = {
'0': [4, 4, 4, 4, 4],
'1': [4, 4, 4, 4, 4],
'2': [4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
'3': [4, 4, 4, 3, 3, 3, 3, 4, 4, 4],
}
# 12m
expansion_ratios_S2 = {
'0': [4, 4, 4, 4],
'1': [4, 4, 4, 4],
'2': [4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4],
'3': [4, 4, 3, 3, 3, 3, 4, 4],
}
# 6.1m
expansion_ratios_S1 = {
'0': [4, 4, 4],
'1': [4, 4, 4],
'2': [4, 4, 3, 3, 3, 3, 4, 4, 4],
'3': [4, 4, 3, 3, 4, 4],
}
# 3.5m
expansion_ratios_S0 = {
'0': [4, 4],
'1': [4, 4],
'2': [4, 3, 3, 3, 4, 4],
'3': [4, 3, 3, 4],
}
class Attention4D(torch.nn.Module):
def __init__(self, dim=384, key_dim=32, num_heads=8,
attn_ratio=4,
resolution=7,
act_layer=nn.ReLU,
stride=None):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
if stride is not None:
self.resolution = math.ceil(resolution / stride)
self.stride_conv = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=stride, padding=1, groups=dim),
nn.BatchNorm2d(dim), )
self.upsample = nn.Upsample(scale_factor=stride, mode='bilinear')
else:
self.resolution = resolution
self.stride_conv = None
self.upsample = None
self.N = self.resolution ** 2
self.N2 = self.N
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
self.q = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
nn.BatchNorm2d(self.num_heads * self.key_dim), )
self.k = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
nn.BatchNorm2d(self.num_heads * self.key_dim), )
self.v = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.d, 1),
nn.BatchNorm2d(self.num_heads * self.d),
)
self.v_local = nn.Sequential(nn.Conv2d(self.num_heads * self.d, self.num_heads * self.d,
kernel_size=3, stride=1, padding=1, groups=self.num_heads * self.d),
nn.BatchNorm2d(self.num_heads * self.d), )
self.talking_head1 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1, stride=1, padding=0)
self.talking_head2 = nn.Conv2d(self.num_heads, self.num_heads, kernel_size=1, stride=1, padding=0)
self.proj = nn.Sequential(act_layer(),
nn.Conv2d(self.dh, dim, 1),
nn.BatchNorm2d(dim), )
points = list(itertools.product(range(self.resolution), range(self.resolution)))
N = len(points)
attention_offsets = {}
idxs = []
for p1 in points:
for p2 in points:
offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N, N))
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, C, H, W = x.shape
if self.stride_conv is not None:
x = self.stride_conv(x)
q = self.q(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
k = self.k(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
v = self.v(x)
v_local = self.v_local(v)
v = v.flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
attn = (
(q @ k) * self.scale
+
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab)
)
# attn = (q @ k) * self.scale
attn = self.talking_head1(attn)
attn = attn.softmax(dim=-1)
attn = self.talking_head2(attn)
x = (attn @ v)
out = x.transpose(2, 3).reshape(B, self.dh, self.resolution, self.resolution) + v_local
if self.upsample is not None:
out = self.upsample(out)
out = self.proj(out)
return out
def stem(in_chs, out_chs, act_layer=nn.ReLU):
return nn.Sequential(
nn.Conv2d(in_chs, out_chs // 2, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs // 2),
act_layer(),
nn.Conv2d(out_chs // 2, out_chs, kernel_size=3, stride=2, padding=1),
nn.BatchNorm2d(out_chs),
act_layer(),
)
class LGQuery(torch.nn.Module):
def __init__(self, in_dim, out_dim, resolution1, resolution2):
super().__init__()
self.resolution1 = resolution1
self.resolution2 = resolution2
self.pool = nn.AvgPool2d(1, 2, 0)
self.local = nn.Sequential(nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=2, padding=1, groups=in_dim),
)
self.proj = nn.Sequential(nn.Conv2d(in_dim, out_dim, 1),
nn.BatchNorm2d(out_dim), )
def forward(self, x):
local_q = self.local(x)
pool_q = self.pool(x)
q = local_q + pool_q
q = self.proj(q)
return q
class Attention4DDownsample(torch.nn.Module):
def __init__(self, dim=384, key_dim=16, num_heads=8,
attn_ratio=4,
resolution=7,
out_dim=None,
act_layer=None,
):
super().__init__()
self.num_heads = num_heads
self.scale = key_dim ** -0.5
self.key_dim = key_dim
self.nh_kd = nh_kd = key_dim * num_heads
self.resolution = resolution
self.d = int(attn_ratio * key_dim)
self.dh = int(attn_ratio * key_dim) * num_heads
self.attn_ratio = attn_ratio
h = self.dh + nh_kd * 2
if out_dim is not None:
self.out_dim = out_dim
else:
self.out_dim = dim
self.resolution2 = math.ceil(self.resolution / 2)
self.q = LGQuery(dim, self.num_heads * self.key_dim, self.resolution, self.resolution2)
self.N = self.resolution ** 2
self.N2 = self.resolution2 ** 2
self.k = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.key_dim, 1),
nn.BatchNorm2d(self.num_heads * self.key_dim), )
self.v = nn.Sequential(nn.Conv2d(dim, self.num_heads * self.d, 1),
nn.BatchNorm2d(self.num_heads * self.d),
)
self.v_local = nn.Sequential(nn.Conv2d(self.num_heads * self.d, self.num_heads * self.d,
kernel_size=3, stride=2, padding=1, groups=self.num_heads * self.d),
nn.BatchNorm2d(self.num_heads * self.d), )
self.proj = nn.Sequential(
act_layer(),
nn.Conv2d(self.dh, self.out_dim, 1),
nn.BatchNorm2d(self.out_dim), )
points = list(itertools.product(range(self.resolution), range(self.resolution)))
points_ = list(itertools.product(
range(self.resolution2), range(self.resolution2)))
N = len(points)
N_ = len(points_)
attention_offsets = {}
idxs = []
for p1 in points_:
for p2 in points:
size = 1
offset = (
abs(p1[0] * math.ceil(self.resolution / self.resolution2) - p2[0] + (size - 1) / 2),
abs(p1[1] * math.ceil(self.resolution / self.resolution2) - p2[1] + (size - 1) / 2))
if offset not in attention_offsets:
attention_offsets[offset] = len(attention_offsets)
idxs.append(attention_offsets[offset])
self.attention_biases = torch.nn.Parameter(
torch.zeros(num_heads, len(attention_offsets)))
self.register_buffer('attention_bias_idxs',
torch.LongTensor(idxs).view(N_, N))
@torch.no_grad()
def train(self, mode=True):
super().train(mode)
if mode and hasattr(self, 'ab'):
del self.ab
else:
self.ab = self.attention_biases[:, self.attention_bias_idxs]
def forward(self, x): # x (B,N,C)
B, C, H, W = x.shape
q = self.q(x).flatten(2).reshape(B, self.num_heads, -1, self.N2).permute(0, 1, 3, 2)
k = self.k(x).flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 2, 3)
v = self.v(x)
v_local = self.v_local(v)
v = v.flatten(2).reshape(B, self.num_heads, -1, self.N).permute(0, 1, 3, 2)
attn = (
(q @ k) * self.scale
+
(self.attention_biases[:, self.attention_bias_idxs]
if self.training else self.ab)
)
# attn = (q @ k) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v).transpose(2, 3)
out = x.reshape(B, self.dh, self.resolution2, self.resolution2) + v_local
out = self.proj(out)
return out
class Embedding(nn.Module):
def __init__(self, patch_size=3, stride=2, padding=1,
in_chans=3, embed_dim=768, norm_layer=nn.BatchNorm2d,
light=False, asub=False, resolution=None, act_layer=nn.ReLU, attn_block=Attention4DDownsample):
super().__init__()
self.light = light
self.asub = asub
if self.light:
self.new_proj = nn.Sequential(
nn.Conv2d(in_chans, in_chans, kernel_size=3, stride=2, padding=1, groups=in_chans),
nn.BatchNorm2d(in_chans),
nn.Hardswish(),
nn.Conv2d(in_chans, embed_dim, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2d(embed_dim),
)
self.skip = nn.Sequential(
nn.Conv2d(in_chans, embed_dim, kernel_size=1, stride=2, padding=0),
nn.BatchNorm2d(embed_dim)
)
elif self.asub:
self.attn = attn_block(dim=in_chans, out_dim=embed_dim,
resolution=resolution, act_layer=act_layer)
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.conv = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
stride=stride, padding=padding)
self.bn = norm_layer(embed_dim) if norm_layer else nn.Identity()
else:
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
stride=stride, padding=padding)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
def forward(self, x):
if self.light:
out = self.new_proj(x) + self.skip(x)
elif self.asub:
out_conv = self.conv(x)
out_conv = self.bn(out_conv)
out = self.attn(x) + out_conv
else:
x = self.proj(x)
out = self.norm(x)
return out
class Mlp(nn.Module):
"""
Implementation of MLP with 1*1 convolutions.
Input: tensor with shape [B, C, H, W]
"""
def __init__(self, in_features, hidden_features=None,
out_features=None, act_layer=nn.GELU, drop=0., mid_conv=False):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.mid_conv = mid_conv
self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
self.act = act_layer()
self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
self.drop = nn.Dropout(drop)
self.apply(self._init_weights)
if self.mid_conv:
self.mid = nn.Conv2d(hidden_features, hidden_features, kernel_size=3, stride=1, padding=1,
groups=hidden_features)
self.mid_norm = nn.BatchNorm2d(hidden_features)
self.norm1 = nn.BatchNorm2d(hidden_features)
self.norm2 = nn.BatchNorm2d(out_features)
def _init_weights(self, m):
if isinstance(m, nn.Conv2d):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
x = self.fc1(x)
x = self.norm1(x)
x = self.act(x)
if self.mid_conv:
x_mid = self.mid(x)
x_mid = self.mid_norm(x_mid)
x = self.act(x_mid)
x = self.drop(x)
x = self.fc2(x)
x = self.norm2(x)
x = self.drop(x)
return x
class AttnFFN(nn.Module):
def __init__(self, dim, mlp_ratio=4.,
act_layer=nn.ReLU, norm_layer=nn.LayerNorm,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
resolution=7, stride=None):
super().__init__()
self.token_mixer = Attention4D(dim, resolution=resolution, act_layer=act_layer, stride=stride)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop, mid_conv=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_1 = nn.Parameter(
layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(self.layer_scale_1 * self.token_mixer(x))
x = x + self.drop_path(self.layer_scale_2 * self.mlp(x))
else:
x = x + self.drop_path(self.token_mixer(x))
x = x + self.drop_path(self.mlp(x))
return x
class FFN(nn.Module):
def __init__(self, dim, pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU,
drop=0., drop_path=0.,
use_layer_scale=True, layer_scale_init_value=1e-5):
super().__init__()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
act_layer=act_layer, drop=drop, mid_conv=True)
self.drop_path = DropPath(drop_path) if drop_path > 0. \
else nn.Identity()
self.use_layer_scale = use_layer_scale
if use_layer_scale:
self.layer_scale_2 = nn.Parameter(
layer_scale_init_value * torch.ones(dim).unsqueeze(-1).unsqueeze(-1), requires_grad=True)
def forward(self, x):
if self.use_layer_scale:
x = x + self.drop_path(self.layer_scale_2 * self.mlp(x))
else:
x = x + self.drop_path(self.mlp(x))
return x
def eformer_block(dim, index, layers,
pool_size=3, mlp_ratio=4.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm,
drop_rate=.0, drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5, vit_num=1, resolution=7, e_ratios=None):
blocks = []
for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (
block_idx + sum(layers[:index])) / (sum(layers) - 1)
mlp_ratio = e_ratios[str(index)][block_idx]
if index >= 2 and block_idx > layers[index] - 1 - vit_num:
if index == 2:
stride = 2
else:
stride = None
blocks.append(AttnFFN(
dim, mlp_ratio=mlp_ratio,
act_layer=act_layer, norm_layer=norm_layer,
drop=drop_rate, drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
resolution=resolution,
stride=stride,
))
else:
blocks.append(FFN(
dim, pool_size=pool_size, mlp_ratio=mlp_ratio,
act_layer=act_layer,
drop=drop_rate, drop_path=block_dpr,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
))
blocks = nn.Sequential(*blocks)
return blocks
class EfficientFormerV2(nn.Module):
def __init__(self, layers, embed_dims=None,
mlp_ratios=4, downsamples=None,
pool_size=3,
norm_layer=nn.BatchNorm2d, act_layer=nn.GELU,
num_classes=1000,
down_patch_size=3, down_stride=2, down_pad=1,
drop_rate=0., drop_path_rate=0.,
use_layer_scale=True, layer_scale_init_value=1e-5,
fork_feat=True,
vit_num=0,
resolution=640,
e_ratios=expansion_ratios_L,
**kwargs):
super().__init__()
if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = stem(3, embed_dims[0], act_layer=act_layer)
network = []
for i in range(len(layers)):
stage = eformer_block(embed_dims[i], i, layers,
pool_size=pool_size, mlp_ratio=mlp_ratios,
act_layer=act_layer, norm_layer=norm_layer,
drop_rate=drop_rate,
drop_path_rate=drop_path_rate,
use_layer_scale=use_layer_scale,
layer_scale_init_value=layer_scale_init_value,
resolution=math.ceil(resolution / (2 ** (i + 2))),
vit_num=vit_num,
e_ratios=e_ratios)
network.append(stage)
if i >= len(layers) - 1:
break
if downsamples[i] or embed_dims[i] != embed_dims[i + 1]:
# downsampling between two stages
if i >= 2:
asub = True
else:
asub = False
network.append(
Embedding(
patch_size=down_patch_size, stride=down_stride,
padding=down_pad,
in_chans=embed_dims[i], embed_dim=embed_dims[i + 1],
resolution=math.ceil(resolution / (2 ** (i + 2))),
asub=asub,
act_layer=act_layer, norm_layer=norm_layer,
)
)
self.network = nn.ModuleList(network)
if self.fork_feat:
# add a norm layer for each output
self.out_indices = [0, 2, 4, 6]
for i_emb, i_layer in enumerate(self.out_indices):
if i_emb == 0 and os.environ.get('FORK_LAST3', None):
layer = nn.Identity()
else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, resolution, resolution))]
def forward_tokens(self, x):
outs = []
for idx, block in enumerate(self.network):
x = block(x)
if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out)
return outs
def forward(self, x):
x = self.patch_embed(x)
x = self.forward_tokens(x)
return x
def update_weight(model_dict, weight_dict):
idx, temp_dict = 0, {}
for k, v in weight_dict.items():
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
idx += 1
model_dict.update(temp_dict)
print(f'loading weights... {idx}/{len(model_dict)} items')
return model_dict
def efficientformerv2_s0(weights='', **kwargs):
model = EfficientFormerV2(
layers=EfficientFormer_depth['S0'],
embed_dims=EfficientFormer_width['S0'],
downsamples=[True, True, True, True, True],
vit_num=2,
drop_path_rate=0.0,
e_ratios=expansion_ratios_S0,
**kwargs)
if weights:
pretrained_weight = torch.load(weights)['model']
model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
return model
def efficientformerv2_s1(weights='', **kwargs):
model = EfficientFormerV2(
layers=EfficientFormer_depth['S1'],
embed_dims=EfficientFormer_width['S1'],
downsamples=[True, True, True, True],
vit_num=2,
drop_path_rate=0.0,
e_ratios=expansion_ratios_S1,
**kwargs)
if weights:
pretrained_weight = torch.load(weights)['model']
model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
return model
def efficientformerv2_s2(weights='', **kwargs):
model = EfficientFormerV2(
layers=EfficientFormer_depth['S2'],
embed_dims=EfficientFormer_width['S2'],
downsamples=[True, True, True, True],
vit_num=4,
drop_path_rate=0.02,
e_ratios=expansion_ratios_S2,
**kwargs)
if weights:
pretrained_weight = torch.load(weights)['model']
model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
return model
def efficientformerv2_l(weights='', **kwargs):
model = EfficientFormerV2(
layers=EfficientFormer_depth['L'],
embed_dims=EfficientFormer_width['L'],
downsamples=[True, True, True, True],
vit_num=6,
drop_path_rate=0.1,
e_ratios=expansion_ratios_L,
**kwargs)
if weights:
pretrained_weight = torch.load(weights)['model']
model.load_state_dict(update_weight(model.state_dict(), pretrained_weight))
return model
if __name__ == '__main__':
inputs = torch.randn((1, 3, 640, 640))
model = efficientformerv2_s0('eformer_s0_450.pth')
res = model(inputs)
for i in res:
print(i.size())
model = efficientformerv2_s1('eformer_s1_450.pth')
res = model(inputs)
for i in res:
print(i.size())
model = efficientformerv2_s2('eformer_s2_450.pth')
res = model(inputs)
for i in res:
print(i.size())
model = efficientformerv2_l('eformer_l_450.pth')
res = model(inputs)
for i in res:
print(i.size())
第②步:修改task.py
(1)引入创建的EfficientFormerV2文件
from ultralytics.nn.backbone.EfficientFormerV2 import *
(2)修改_predict_once函数
def _predict_once(self, x, profile=False, visualize=False, embed=None):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
embed (list, optional): A list of feature vectors/embeddings to return.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt, embeddings = [], [], [] # outputs
for idx, m in enumerate(self.model):
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if hasattr(m, 'backbone'):
x = m(x)
for _ in range(5 - len(x)):
x.insert(0, None)
for i_idx, i in enumerate(x):
if i_idx in self.save:
y.append(i)
else:
y.append(None)
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
x = x[-1]
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
# if type(x) in {list, tuple}:
# if idx == (len(self.model) - 1):
# if type(x[1]) is dict:
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')
# else:
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')
# else:
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
# elif type(x) is dict:
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')
# else:
# if not hasattr(m, 'backbone'):
# print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
(3)修改parse_model函数
可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明
def parse_model(d, ch, verbose=True, warehouse_manager=None): # model_dict, input_channels(3)
"""Parse a YOLO model.yaml dictionary into a PyTorch model."""
import ast
# Args
max_channels = float("inf")
nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
if scales:
scale = d.get("scale")
if not scale:
scale = tuple(scales.keys())[0]
LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
if len(scales[scale]) == 3:
depth, width, max_channels = scales[scale]
elif len(scales[scale]) == 4:
depth, width, max_channels, threshold = scales[scale]
if act:
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
if verbose:
LOGGER.info(f"{colorstr('activation:')} {act}") # print
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<60}{'arguments':<50}")
ch = [ch]
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
is_backbone = False
for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]): # from, number, module, args
try:
if m == 'node_mode':
m = d[m]
if len(args) > 0:
if args[0] == 'head_channel':
args[0] = int(d[args[0]])
t = m
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
except:
pass
for j, a in enumerate(args):
if isinstance(a, str):
with contextlib.suppress(ValueError):
try:
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
except:
args[j] = a
n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
if m in {
Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR,
C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
}:
if args[0] == 'head_channel':
args[0] = d[args[0]]
c1, c2 = ch[f], args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
if m is C2fAttn:
args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8) # embed channels
args[2] = int(
max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
) # num heads
args = [c1, c2, *args[1:]]
if m in (KWConv, C2f_KW, C3_KW):
args.insert(2, f'layer{i}')
args.insert(2, warehouse_manager)
if m in (DySnakeConv,):
c2 = c2 * 3
if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
args[3] = make_divisible(min(args[3], max_channels) * width, 8)
if m in {
BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided,
C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
}:
args.insert(2, n) # number of repeats
n = 1
elif m in {AIFI, AIFI_RepBN}:
args = [ch[f], *args]
c2 = args[0]
elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
c1, cm, c2 = ch[f], args[0], args[1]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
cm = make_divisible(min(cm, max_channels) * width, 8)
args = [c1, cm, c2, *args[2:]]
if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
args.insert(4, n) # number of repeats
n = 1
elif m is ResNetLayer:
c2 = args[1] if args[3] else args[1] * 4
elif m is nn.BatchNorm2d:
args = [ch[f]]
elif m is Concat:
c2 = sum(ch[x] for x in f)
elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
args.append([ch[x] for x in f])
if m in SEGMENT_CLASS:
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
args[3] = make_divisible(min(args[3], max_channels) * width, 8)
if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
args[1] = make_divisible(min(args[1], max_channels) * width, 8)
if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
args[2] = make_divisible(min(args[2], max_channels) * width, 8)
elif m is RTDETRDecoder: # special case, channels arg must be passed in index 1
args.insert(1, [ch[x] for x in f])
elif m is Fusion:
args[0] = d[args[0]]
c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
args = [c1, args[0]]
elif m is CBLinear:
c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
c1 = ch[f]
args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
elif m is CBFuse:
c2 = ch[f[-1]]
elif isinstance(m, str):
t = m
if len(args) == 2:
m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
elif len(args) == 1:
m = timm.create_model(m, pretrained=args[0], features_only=True)
c2 = m.feature_info.channels()
elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
RevCol,
lsknet_t, lsknet_s,
SwinTransformer_Tiny,
repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
transnext_micro, transnext_tiny, transnext_small, transnext_base,
RMT_T, RMT_S, RMT_B, RMT_L,
PKINET_T, PKINET_S, PKINET_B,
MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
}:
if m is RevCol:
args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
args[2] = [max(round(k * depth), 1) for k in args[2]]
m = m(*args)
c2 = m.channel
elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN,
DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
c2 = ch[f]
args = [c2, *args]
# print(args)
elif m in {SimAM, SpatialGroupEnhance}:
c2 = ch[f]
elif m is ContextGuidedBlock_Down:
c2 = ch[f] * 2
args = [ch[f], c2, *args]
elif m is BiFusion:
c1 = [ch[x] for x in f]
c2 = make_divisible(min(args[0], max_channels) * width, 8)
args = [c1, c2]
# --------------GOLD-YOLO--------------
elif m in {SimFusion_4in, AdvPoolFusion}:
c2 = sum(ch[x] for x in f)
elif m is SimFusion_3in:
c2 = args[0]
if c2 != nc: # if c2 not equal to number of classes (i.e. for Classify() output)
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [[ch[f_] for f_ in f], c2]
elif m is IFM:
c1 = ch[f]
c2 = sum(args[0])
args = [c1, *args]
elif m is InjectionMultiSum_Auto_pool:
c1 = ch[f[0]]
c2 = args[0]
args = [c1, *args]
elif m is PyramidPoolAgg:
c2 = args[0]
args = [sum([ch[f_] for f_ in f]), *args]
elif m is TopBasicLayer:
c2 = sum(args[1])
# --------------GOLD-YOLO--------------
# --------------ASF--------------
elif m is Zoom_cat:
c2 = sum(ch[x] for x in f)
elif m is Add:
c2 = ch[f[-1]]
elif m in {ScalSeq, DynamicScalSeq}:
c1 = [ch[x] for x in f]
c2 = make_divisible(args[0] * width, 8)
args = [c1, c2]
elif m is asf_attention_model:
args = [ch[f[-1]]]
# --------------ASF--------------
elif m is SDI:
args = [[ch[x] for x in f]]
elif m is Multiply:
c2 = ch[f[0]]
elif m is FocusFeature:
c1 = [ch[x] for x in f]
c2 = int(c1[1] * 0.5 * 3)
args = [c1, *args]
elif m is DASI:
c1 = [ch[x] for x in f]
args = [c1, c2]
elif m is CSMHSA:
c1 = [ch[x] for x in f]
c2 = ch[f[-1]]
args = [c1, c2]
elif m is CFC_CRB:
c1 = ch[f]
c2 = c1 // 2
args = [c1, *args]
elif m is SFC_G2:
c1 = [ch[x] for x in f]
c2 = c1[0]
args = [c1]
elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
c2 = ch[f[1]]
args = [c2, *args]
elif m in {ContextGuideFusionModule}:
c1 = [ch[x] for x in f]
c2 = 2 * c1[1]
args = [c1]
# elif m in {PSA}:
# c2 = ch[f]
# args = [c2, *args]
elif m in {SBA}:
c1 = [ch[x] for x in f]
c2 = c1[-1]
args = [c1, c2]
elif m in {WaveletPool}:
c2 = ch[f] * 4
elif m in {WaveletUnPool}:
c2 = ch[f] // 4
elif m in {CSPOmniKernel}:
c2 = ch[f]
args = [c2]
elif m in {ChannelTransformer, PyramidContextExtraction}:
c1 = [ch[x] for x in f]
c2 = c1
args = [c1]
elif m in {RCM}:
c2 = ch[f]
args = [c2, *args]
elif m in {DynamicInterpolationFusion}:
c2 = ch[f[0]]
args = [[ch[x] for x in f]]
elif m in {FuseBlockMulti}:
c2 = ch[f[0]]
args = [c2]
elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
c2 = [ch[x] for x in f]
args = [c2[0], *args]
elif m in {FreqFusion}:
c2 = ch[f[0]]
args = [[ch[x] for x in f], *args]
elif m in {DynamicAlignFusion}:
c2 = args[0]
args = [[ch[x] for x in f], c2]
elif m in {ConvEdgeFusion}:
c2 = make_divisible(min(args[0], max_channels) * width, 8)
args = [[ch[x] for x in f], c2]
elif m in {MutilScaleEdgeInfoGenetator}:
c1 = ch[f]
c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
args = [c1, c2]
elif m in {MultiScaleGatedAttn}:
c1 = [ch[x] for x in f]
c2 = min(c1)
args = [c1]
elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
c1 = [ch[x] for x in f]
c2 = c1[0]
args = [c1]
elif m in {GetIndexOutput}:
c2 = ch[f][args[0]]
elif m is HyperComputeModule:
c1, c2 = ch[f], args[0]
c2 = make_divisible(min(c2, max_channels) * width, 8)
args = [c1, c2, threshold]
else:
c2 = ch[f]
if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
is_backbone = True
m_ = m
m_.backbone = True
else:
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
m.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<60}{str(args):<50}") # print
save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
ch.extend(c2)
for _ in range(5 - len(ch)):
ch.insert(0, 0)
else:
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
第③步:yolov8.yaml文件修改
在下述文件夹中创立yolov8-EfficientFormerV2.yaml
# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers, 3157200 parameters, 3157184 gradients, 8.9 GFLOPs
s: [0.33, 0.50, 1024] # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients, 28.8 GFLOPs
m: [0.67, 0.75, 768] # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients, 79.3 GFLOPs
l: [1.00, 1.00, 512] # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
x: [1.00, 1.25, 512] # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32
# YOLOv8.0n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, efficientformerv2_s0, []] # 4
- [-1, 1, SPPF, [1024, 5]] # 5
# YOLOv8.0n head
head:
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
- [[-1, 3], 1, Concat, [1]] # 7 cat backbone P4
- [-1, 3, C2f, [512]] # 8
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
- [[-1, 2], 1, Concat, [1]] # 10 cat backbone P3
- [-1, 3, C2f, [256]] # 11 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]] # 12
- [[-1, 8], 1, Concat, [1]] # 13 cat head P4
- [-1, 3, C2f, [512]] # 14 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]] # 15
- [[-1, 5], 1, Concat, [1]] # 16 cat head P5
- [-1, 3, C2f, [1024]] # 17 (P5/32-large)
- [[11, 14, 17], 1, Detect, [nc]] # Detect(P3, P4, P5)
第④步:验证是否加入成功
将train.py中的配置文件进行修改,并运行
🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋
🍁YOLOv8入门+改进专栏🍁
【YOLOv8改进系列】:
【YOLOv8】YOLOv8结构解读
YOLOv8改进系列(1)----替换主干网络之EfficientViT
YOLOv8改进系列(2)----替换主干网络之FasterNet
YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2
YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck