Spring Batch 概览

news2025/3/10 5:18:27

Spring Batch 是什么?

Spring Batch 是 Spring 生态系统中的一个轻量级批处理框架,专门用于处理大规模数据任务。它特别适合企业级应用中需要批量处理数据的场景,比如数据迁移、报表生成、ETL(Extract-Transform-Load)流程等。它的核心目标是提供一个健壮、可扩展的解决方案,让开发者能高效地定义和执行批处理作业,同时处理大量数据时保证可靠性。

Spring Batch 的设计基于 Spring 框架,继承了 Spring 的依赖注入和面向切面编程(AOP)等特性,再结合批处理领域的常见模式(如分块处理、事务管理、错误重试等),形成了一套完整的批处理体系。


Spring Batch 的核心原理

Spring Batch 的工作原理可以用“作业(Job)”和“步骤(Step)”这两个概念来概括。它的架构围绕着批处理的经典模式:读取数据(Read)、处理数据(Process)、写入数据(Write)。以下是它的核心原理和关键组件的拆解:

1. 作业(Job)和步骤(Step)

  • 作业(Job):一个完整的批处理任务称为“作业”。比如“从 CSV 文件读取用户数据,处理后存入数据库”就是一个 Job。Job 是 Spring Batch 的顶层概念,它由一个或多个步骤(Step)组成。
  • 步骤(Step):作业的具体执行单元。每个 Step 通常包含读取、处理和写入数据的逻辑。Step 是 Job 的子任务,可以串行执行,也可以并行执行。

Spring Batch 通过 JobRepository(作业仓库)来管理和持久化 Job 和 Step 的状态。每次运行 Job 时,框架会记录它的执行情况(比如开始时间、结束时间、成功或失败状态),以便支持重启、监控等功能。

2. 分块处理(Chunk-Oriented Processing)

Spring Batch 的核心执行模式是“分块处理”(Chunk-Oriented Processing),这是它区别于传统逐条处理的关键:

  • 读取(ItemReader):从数据源(如文件、数据库、消息队列)读取数据,每次读取一条记录。
  • 处理(ItemProcessor):对读取到的每条数据进行加工,比如格式转换、过滤、计算等。这一步是可选的,如果不需要加工可以跳过。
  • 写入(ItemWriter):将处理后的数据批量写入目标(如数据库、文件)。Spring Batch 不是逐条写入,而是攒够一定数量(称为“Chunk Size”,比如 100 条)后一次性提交,这样能显著提升性能。

这种分块处理的原理类似于“攒一波再干活”,通过批量操作减少 I/O 开销,同时结合事务管理,确保数据一致性。如果某个 Chunk 处理失败,Spring Batch 会回滚这个 Chunk 的事务,而不会影响其他 Chunk。

3. 任务执行与调度

Spring Batch 不直接负责调度(比如定时运行),但它提供了 JobLauncher(作业启动器)来触发 Job 的执行。开发者可以通过 Spring Boot 的 @Scheduled 注解或其他调度工具(如 Quartz)结合 JobLauncher,实现定时或手动启动 Job。

执行时,Spring Batch 会:

  1. JobRepository 检查 Job 的状态,决定是新建执行还是重启之前的失败作业。
  2. 按顺序(或并行)执行每个 Step。
  3. 在每个 Step 内,按 Chunk Size 分块处理数据。

4. 元数据管理

Spring Batch 需要一个数据库来存储批处理的元数据(Metadata),比如:

  • BATCH_JOB_INSTANCE:记录每个 Job 实例。
  • BATCH_JOB_EXECUTION:记录每次 Job 的执行情况。
  • BATCH_STEP_EXECUTION:记录每个 Step 的执行情况。

这些元数据不仅用于监控和日志,还支持“重启”(Restart)和“跳过”(Skip)功能。如果 Job 中途失败,Spring Batch 可以从上一次成功的点继续执行,而不会重复处理已完成的部分。

5. 容错与扩展

Spring Batch 内置了强大的容错机制:

  • 重试(Retry):如果某条记录处理失败,可以配置重试次数和目标异常。
  • 跳过(Skip):如果重试仍失败,可以跳过这条记录,继续处理后续数据。
  • 分区(Partitioning):对于超大数据量,Spring Batch 支持将数据分成多个分区(Partition),交给多个线程或进程并行处理,提升吞吐量。

这些特性让 Spring Batch 在面对复杂场景时也能保持稳定性和高性能。


Spring Batch 的工作流程

以一个简单例子说明原理:假设我们要从 CSV 文件读取 1000 条用户记录,过滤掉年龄小于 18 的用户,然后存入数据库。Spring Batch 的工作流程如下:

  1. 定义 Job 和 Step

    • 配置一个 Job,包含一个 Step。
    • Step 中指定 ItemReader(读取 CSV)、ItemProcessor(过滤年龄)、ItemWriter(写入数据库)。
  2. 分块执行

    • 设置 Chunk Size 为 100。
    • ItemReader 从 CSV 读取一条记录,交给 ItemProcessor
    • ItemProcessor 检查年龄,如果小于 18 返回 null(表示过滤掉),否则返回处理后的数据。
    • 攒够 100 条有效记录后,ItemWriter 一次性写入数据库。
  3. 事务管理

    • 每个 Chunk 是一个独立的事务。如果第 3 个 Chunk(201-300 条)写入失败,Spring Batch 会回滚这个 Chunk,但不会影响已成功的 1-200 条。
  4. 元数据记录

    • Job 和 Step 的执行状态存入数据库。如果任务中断,下次重启时从第 201 条开始处理。
  5. 结果

    • 最终数据库中存储了年龄大于等于 18 的用户记录,CSV 中的无效数据被过滤。

核心组件详解

以下是 Spring Batch 的关键组件及其作用:

  • Job:批处理的顶层容器,定义整个任务。
  • Step:Job 的执行单元,可以是分块处理(Chunk-Oriented)或简单任务(Tasklet)。
  • ItemReader:数据读取器,支持多种来源(如 CSV、XML、数据库、JMS)。
  • ItemProcessor:数据处理器,负责转换或过滤(可选)。
  • ItemWriter:数据写入器,支持多种目标(如文件、数据库、消息队列)。
  • JobRepository:存储元数据的仓库,通常基于关系型数据库(如 H2、MySQL)。
  • JobLauncher:启动 Job 的工具,可以手动调用或通过调度触发。
  • ExecutionContext:执行上下文,用于在 Step 或 Job 间传递数据,支持重启时恢复状态。

Spring Batch 的优势

  1. 模块化:通过 Reader、Processor、Writer 分离职责,代码结构清晰,易于维护。
  2. 高性能:分块处理和分区机制大幅提升大数据处理的效率。
  3. 容错性:重试、跳过、重启等功能保证任务的可靠性。
  4. 生态集成:与 Spring Boot、Spring Data 等无缝整合,减少配置成本。
  5. 可扩展性:支持并行处理和分布式部署,适应企业级需求。

实际应用中的原理示例

假设一个金融系统需要每天凌晨处理前一天的交易记录:

  • Job:名为“DailyTransactionJob”。
  • Step 1:从 CSV 文件读取交易记录(ItemReader),过滤无效交易(ItemProcessor),写入临时表(ItemWriter)。
  • Step 2:从临时表读取数据,计算汇总统计,写入最终报表表。
  • 调度:通过 Spring Boot 的 @Scheduled 在凌晨 1 点启动。
  • 容错:如果某条记录格式错误,跳过并记录日志,不影响整体任务。

Spring Batch 会将数据分成每 1000 条一个 Chunk,逐块处理。如果中途宕机,下次启动时从上次成功的 Chunk 继续,避免重复计算。


总结

Spring Batch 的原理可以用一句话概括:通过分块处理和元数据管理,将大规模数据任务分解为可控的步骤,提供高效、可靠的批处理能力。它的核心在于“分而治之”和“健壮性”,通过 Job 和 Step 的结构化设计,结合 Reader-Processor-Writer 的流程,再加上事务、容错和扩展机制,让开发者能轻松应对复杂的批处理需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2312498.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

day-106 统计放置房子的方式数

思路 动态规划:因为中间有街道隔开,所以只需计算一边街道的排列方式,最后计算平方即可 解题过程 动态转换方程:f[i]f[i-1]f[i-2] Code class Solution {int num 1000000007;public int countHousePlacements(int n) {int arr[…

PostgreSQL安装和mcp PostgreSQL

文章目录 一. 安装之后修改权限并登录1. 确保当前用户具有sudo权限2. 修改/etc/postgresql/<版本号>/main/pg_hba.conf配置文件为trust&#xff0c;可以免密登录3. 进行免密登录4. 添加root用户和修改postgres用户密码1. postgres用户密码2. 添加root用户3. 为root用户设…

LPZero: Language Model Zero-cost Proxy Search from Zero(未更新完预览版本)

LPZero代码 摘要 神经架构搜索 (NAS) 有助于自动执行有效的神经网络搜索&#xff0c;同时需要大量的计算资源&#xff0c;尤其是对于语言模型。零样本 NAS 利用零成本 (ZC) 代理来估计模型性能&#xff0c;从而显着降低计算需求。然而&#xff0c;现有的 ZC 代理严重依赖于深…

字典树运用

字典树运用 字典树LC208 创建字典树0-1字典树 字典树 字典树又叫 前缀树&#xff0c; 是一种树形数据结构&#xff0c;用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景&#xff0c;例如自动补全和拼写检查。 LC208 创建字典树 这是一个字符串字典树…

RReadWriteLock读写锁应用场景

背景 操作涉及一批数据&#xff0c;如订单&#xff0c;可能存在多个场景下操作&#xff0c;先使用读锁&#xff0c;从redis缓存中获取操作中数据 比如 关闭账单&#xff0c; 发起调账&#xff0c; 线下结算&#xff0c; 合并支付 先判断当前操作的数据&#xff0c;是否在…

0087.springboot325基于Java的企业OA管理系统的设计与实现+论文

一、系统说明 基于springbootvue的企业OA管理系统,系统功能齐全, 代码简洁易懂&#xff0c;适合小白学编程。 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数…

Spring Boot 3 整合 MinIO 实现分布式文件存储

引言 文件存储已成为一个做任何应用都不可回避的需求。传统的单机文件存储方案在面对大规模数据和高并发访问时往往力不从心&#xff0c;而分布式文件存储系统则提供了更好的解决方案。本篇文章我将基于Spring Boot 3 为大家讲解如何基于MinIO来实现分布式文件存储。 分布式存…

Redis|集群 Cluster

文章目录 是什么能干嘛集群算法-分片-槽位slotredis集群的槽位slotredis集群的分片分片槽位的优势slot槽位映射——业界的3种解决方案小厂&#xff1a;哈希取余分区中厂&#xff1a;一致性哈希算法分区大厂&#xff1a;哈希槽分区 面试题&#xff1a;为什么 Redis 集群的最大槽…

【定制开发】碰一碰发视频系统定制开发,支持OEM

在短视频营销爆发的2025年&#xff0c;"碰一碰发视频"技术已成为实体商家引流标配。某连锁餐饮品牌通过定制化开发&#xff0c;单月视频发布量突破10万条&#xff0c;获客成本降低80%&#xff01;本文将深入解析该系统的技术架构与开发要点&#xff0c;助你快速搭建高…

Linux上位机开发(开篇)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 传统的上位机开发&#xff0c;一般都是默认pc软件开发。既然是pc软件&#xff0c;一般来说都是基于windows平台开发。开放的框架&#xff0c;无非是…

算法005——有效三角形个数

力扣——有效三角形个数点击链接跳转 判断三条边是否能组成三角形&#xff0c;大家第一时间想到的就是两边之和大于第三边 但是运用这个方法&#xff0c;我们需要判断三次&#xff0c;有一个更简单的方法&#xff0c;只需要判断一次 因为 C 已经是三边之中最大的了&#xff…

【STM32】江科大STM32学习笔记汇总(已完结)

00. 目录 文章目录 00. 目录01. STM32学习笔记汇总02. 相关资料下载03. 打赏04. 附录 01. STM32学习笔记汇总 【STM32】STM32学习笔记-课程简介(01) 【STM32】STM32学习笔记-STM32简介(02) 【STM32】STM32学习笔记-软件安装(03) 【STM32】STM32学习笔记-新建工程(04) 【ST…

【Python编程】高性能Python Web服务部署架构解析

一、FastAPI 与 Uvicorn/Gunicorn 的协同 1. 开发环境&#xff1a;Uvicorn 直接驱动 作用&#xff1a;Uvicorn 作为 ASGI 服务器&#xff0c;原生支持 FastAPI 的异步特性&#xff0c;提供热重载&#xff08;--reload&#xff09;和高效异步请求处理。 启动命令&#xff1a; u…

OSPF的各种LSA类型,多区域及特殊区域

一、OSPF的LSA类型 OSPF&#xff08;开放最短路径优先&#xff09;协议使用多种LSA&#xff08;链路状态通告&#xff09;类型来交换网络拓扑信息。以下是主要LSA类型的详细分类及其作用&#xff1a; 1. Type 1 LSA&#xff08;路由器LSA&#xff09; 生成者&#xff1a;每个…

pyqt联合designer的运用和设置

PyQt Designer 简介 PyQt Designer 是一个用于创建和设计 PyQt 应用程序用户界面的可视化工具。它允许用户通过拖放方式添加和排列各种控件,如按钮、文本框、滑块等,并设置它们的属性和样式,从而快速构建出美观且功能完整的 UI 界面。 Windows版本:【免费】安装包别管啊啊…

vulnhub靶场之【digitalworld.local系列】的snakeoil靶机

前言 靶机&#xff1a;digitalworld.local-snakeoil&#xff0c;IP地址为192.168.10.11 攻击&#xff1a;kali&#xff0c;IP地址为192.168.10.6 kali采用VMware虚拟机&#xff0c;靶机选择使用VMware打开文件&#xff0c;都选择桥接网络 这里官方给的有两种方式&#xff0…

Ubuntu切换lowlatency内核

文章目录 一. 前言二. 开发环境三. 具体操作 一. 前言 低延迟内核&#xff08;Lowlatency Kernel&#xff09; 旨在为需要低延迟响应的应用程序设计的内核版本。Linux-lowlatency特别适合音频处理、实时计算、游戏和其他需要及时响应的实时任务。其主要特点是优化了中断处理、调…

C++修炼之路:初识C++

Hello大家好&#xff01;很高兴我们又见面啦&#xff01;给生活添点passion&#xff0c;开始今天的编程之路&#xff01; 我的博客&#xff1a;<但凡. 我的专栏&#xff1a;《编程之路》、《数据结构与算法之美》、《题海拾贝》 欢迎点赞&#xff0c;关注&#xff01; 引言 …

微信小程序+SpringBoot的单词学习小程序平台(程序+论文+讲解+安装+修改+售后)

感兴趣的可以先收藏起来&#xff0c;还有大家在毕设选题&#xff0c;项目以及论文编写等相关问题都可以给我留言咨询&#xff0c;我会一一回复&#xff0c;希望帮助更多的人。 系统背景 &#xff08;一&#xff09;社会需求背景 在全球化的大背景下&#xff0c;英语作为国际…

VBA 数据库同一表的当前行与其他行的主键重复判断实现方案1

目的&#xff0c;判断是否主键重复&#xff0c;不重复则登录新数据&#xff0c;重复则不登录。 定义类型&#xff1a; DataRecord   tableName 表名   rowNumber 行号   columnName 列名   data 数据 想要实现的代码逻辑如下&#xff1a; 模拟数据库的登录过程。假设…