1.LeNet的原始实验数据集MNIST
名称:MNIST手写数字数据集
数据类型:灰度图 (一通道)
图像大小:28*28
类别数:10类(数字0-9)
1.通过torchvision.datasets.MNIST下载并保存到本地为JPEG图片:
下载数据集并保存图片形式(download_mnist.py)
库:sys,os,tqdm
图片命名的格式为:子数据集名_在子数据集中的编号_真实值标签。
图片大小:28*28
2.使用gzip解析MNIST数据集文件parse_mnist.py
MNIST的图片和标签均通过二进制文件进行保存(.gz),无法直接在Windows中查看手写数字的图片和标签,通过gzip解压,转换为numpy数组。
将标签数据转换为one-hot编码:将每个标签转换为一个向量,其中该标签对应的索引位置为 1,其他位置为 0。
one-hot编码
将类别标签转化为一个 长度为类别数的二进制向量,每个类别的位置对应为 1,其它位置为 0。
one-hot编码
将类别标签转化为一个 长度为类别数的二进制向量,每个类别的位置对应为 1,其它位置为 0。
- 数字 0 →
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- 数字 1 →
[0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
- 数字 2 →
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
3、预处理数据集(prepare_data.py)
调用parse_mnist函数对原始的mnist数据进行解析,创建数据加载器train_loader
- 归一化:将加载的图像数据除以 255.0,将图像的像素值从 [0, 255] 范围缩放到 [0, 1]。
- 转换为 Tensor:将NumPy 数组转换为 PyTorch 的 Tensor 。
- 重塑图像:将图像数据从 28x28 的二维数组重塑为符合神经网络输入要求的形状 (-1, 1, 28, 28)。
- 创建数据集和数据加载器:
train_dataset = TensorDataset(train_image, train_label)
#TensorDataset:数据集类,将图像和标签数据封装成一个数据集
train_loader=(train_dataset,batch_size=64,shuffle=True)
#DataLoader:数据加载器类,数据集分成小批次,shuffle=True可打乱
2.LeNet神经网络模型
公式
1.N = (W-F+2P)/S+1
卷积后尺寸=(输入-卷积核+加边像素数)/步长 +1
用于计算卷积层/池化层输出的尺寸,参数含义:
N:输出特征图的大小
W:输入特征图的大小
F:卷积核的大小(5*5)
P:填充(padding)的大小,表示在输入的边缘填充多少像素
S: 步长(stride),卷积核每次滑动的步幅
2.输出通道数 = 卷积核组数量
输入通道数=上一层的输出通道数
卷积层通道数逐渐增加
3.输出图像尺度计算
N = (W-F+2P)/S+1
- 第一层:C1卷积层
输入:28*28*1
参数:self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2,stride=1)
输出:28*28*6(padding=2宽高不变,通道数为6)
- 第二层:S2池化层(使图像尺寸减半)
输入:28*28*6
参数:self.s2 = nn.AvgPool2d(kernel_size=2, stride=2,padding=0)
池化核大小默认等于步长,使输出大小是输入大小的一半
输出:14*14*6
- 第三层:C3卷积层
输入:14*14*6
参数:self.c3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5,padding=0,stride=1)
输出:10*10*16
- 第四层:S4池化层
输入:10*10*16
参数:self.s4 = nn.AvgPool2d(kernel_size=2, stride=2)
输出:5*5*16
- 第五层:C5卷积层
输入:5*5*16
参数self.c5 = nn.Conv2:d(in_channels=16, out_channels=120, kernel_size=5,padding=0,stride=1)
输出:1*1*120
概念
卷积层
卷积核:二维数组
主要功能:对输入数据进行特征提取,卷积操作实质上是把卷积核当滤波器在图像上特征提取。
卷积步骤:
- 卷积窗口从输入数组的最左上方,从左往右、从上到下,依次在输入数组上滑动。
- 窗口中的输入子数组与卷积核按元素相乘并求和,得到输出数组中相应位置的元素。
池化层
基本操作:缩小图片,保留重要特征。不会裁剪删除内容。
池化步骤:
- 池化层对输入数据的局部区域(池化窗口)计算输出,取最大值或平均值,最终降低特征图的尺寸。
最大池化Max Pooling
取局部区域的最大值
作用:保留最明显的特征(边缘、纹理)
平均池化Avg Pooling
取局部区域的平均值
作用:反映特征的整体分布情况。
池化核大小Kernel_size
定义池化窗口的大小
步长stride
控制窗口移动的步长(默认等于池化核大小)
填充padding
在输入特征图的边缘补零:
保持输出大小不变(如 padding=1 可以保持尺寸)。
防止边缘信息丢失
激活函数(非线性函数)
(1)sigmoid函数
输出范围(0,1),适用于输出概率。sigmoid函数清晰地解释神经元激活水平:接近1,更高激活;接近0,较低激活。
应用场景:二分类问题
(2)ReLU激活函数
如果输入x是 正数,ReLU 输出 x本身。
如果输入x是 负数,ReLU 输出 0。
作用:
- 激活函数的作用是让网络学习非线性的特征
- 解决梯度消失问题:Sigmoid 和 Tanh 函数,输入值变的特别大或特别小时,激活函数的梯度接近0.
缺点:
死神经元问题:某些神经元输出 永远是 0 时(也就是当输入总是负数时)。这会导致这些神经元在训练过程中不再被更新
(3)tanh函数
输出范围:(-1,1)