模型微调——模型性能提升方法及注意事项(自用)

news2025/3/9 20:01:00

名词补充

人为为训练数据标注的标签称为黄金标准或真实值,这个过程一定程度上保证训练的准确性,但是其人工标注的成本和时间很高,并且标注的标签受人的主观因素影响。

 导致模型性能不佳的因素和解决办法

不同类别的数据不平衡:统计各类数据的条数,然后对条数落差大的数据进行类别增加。这一步是对模型训练前的数据检查,也是最容易且能较大程度提高模型性能的方式。

并且在训练过程中,可以将各个类的预测评分进行存储并同时得到每个类的平均预测评分,利用平均预测评分来查看哪个类预测准确度高,哪个类的准确率过低需要进行调整。对于每个类的预测评分可以用来进行概率值分布,得到其预测评分的柱状分布,然后可以选择对应的阈值用于决定后续模型问答的答案输出,如果低于这个阈值则模型不输出预测结果或预测结论

训练后查看模型评分,如果不好,可以试着调整模型的超参数或直接更换模型

③对训练好的模型进行测试,查看测试数据集的混淆矩阵,然后来于计算测试中每个类的精度、准确度和召回率

④对数据集中的训练数量较少的类进行数据增加,增加的这部分数据称为过采样(相对来说,减少训练数据较多的数据,减少的这部分数据称为欠采样)。对于过采样方法是随机复制一些样本数据并添加进训练数据中。

学习欠采样和过采样的链接:

Undersampling and oversampling imbalanced data | Kaggle

⑤对出现训练数据不足,需要过采样的情况,不仅可以通过随机复制来实现,也可以通过生产新数据的方式来实现。那么生成的新数据肯定不能是盲目生成,这里有几种生成新数据的方法:

A.基于规则生成新的训练数据

这里涉及一个NLTK库,其中涉及编译原理中的上下文无关语法这类规则(CFG,context-free grammar),使用这个规则可以生成结构化数据,而这个规则重在编写的语法,与规则名称和规则本身无关。但是这种方法得到的数据过于模板化,不能提高模型应对复杂语境的需要以及模型可能会由于大量的这类句子出现过拟合的现象

B.使用LLM生成新的训练数据

这个方法是最简单且快速的方法,其可以直接在LLM界面窗口上进行提出:“给我生成与我给出的数据条主题一致的新数据,并给出40条,每条文本不要过长,大概60个文本即可,并且力求简洁”。为了使得LLM生成的新数据的多样性,可以对LLM的温度参数进行调整,参数调整范围:[0,2],温度越低,即越靠近0,那么模型就越冷静,对同一问题的多次回复差别不大(这里面的原理是:模型的温度越低,其模型选择高概率词作为下一个词;模型的温度越高,其模型可能会选择低概率词作为下一个词)

C.使用众包的方法生成新的训练数据

使用人工来产生新数据,一般不推荐,除非需产生的数据的复杂性高,标准高,难度大,才采用这个方式,否则其新数据的产生的成本太高了。

D.采用复合方式产生新的数据

比如基于规则和LLM混用的方式产生新的数据。

对于权威数据集,则采用以上方式产生的数据有待确证

可视化数据集的相似程度分布(散点图),以此来决定对数据集是否需要更细的分类。

⑦如果通过①②③④⑤⑥查看到测试的准确度过低可以采用对程序的结构进行更改

以上五点都是基于数据集不是标准数据集的情况,如果数据集是标准的,那么不能对其进行更改,否则所进行的工作就无法与其他研究人员的工作进行对比,即丧失研究可比性,那么此时只能使用对模型超参数的调节或者对模型的更换。

二分类和多分类的在激活函数与损失函数的选择的不同

二分类:激活函数选择sigmoid且得到一个概率值;损失函数选择Binary Cross-Entropy

多分类:激活函数选择softmax且得到各类的概率值,损失函数选择Sparse Categorical Cross-Entropy(稀疏分类交叉熵)、Catergorical Cross-Entropy(分类交叉熵)

 数据集管理技巧

将数据集存储在文件夹中,在这个大文件夹下每个类都有一个单独的文件夹,避免出现套用多层文件夹的情况保存各类数据

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2312306.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

景联文科技:以精准数据标注赋能AI进化,构筑智能时代数据基石

在人工智能技术席卷全球的浪潮中,高质量数据已成为驱动AI模型进化的核心燃料。作为全球领先的AI数据服务解决方案提供商,景联文科技深耕数据标注领域多年,以技术为基、以专业为本,致力于为全球客户提供全场景、高精度、多模态的数…

嵌入式L6计算机网络

Telnet不加密 socket是应用层和下面的内核

华为鸿蒙系统全景解读:从内核设计到生态落地的技术革命

华为鸿蒙系统全景解读:从内核设计到生态落地的技术革命 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 文章目录 华为鸿蒙系统全景解读&#x…

八卡5090服务器首发亮相!

AI 人工智能领域热度居高不下。OpenAI 的 GPT - 4 凭强悍语言处理能力,在内容创作、智能客服等领域广泛应用。清华大学团队的 DeepSeek 大模型在深度学习训练优势突出,正促使各行业应用端算力需求向推理主导转变,呈爆发式增长 。 随着 DeepS…

基于SSM+Vue+uniapp的驾校预约管理小程序+LW示例

系列文章目录 1.基于SSM的洗衣房管理系统原生微信小程序LW参考示例 2.基于SpringBoot的宠物摄影网站管理系统LW参考示例 3.基于SpringBootVue的企业人事管理系统LW参考示例 4.基于SSM的高校实验室管理系统LW参考示例 5.基于SpringBoot的二手数码回收系统原生微信小程序LW参考示…

《用Python+PyGame开发双人生存游戏!源码解析+完整开发思路分享》

导语​ "你是否想过用Python开发一款可玩性高的双人合作游戏?本文将分享如何从零开始实现一款类《吸血鬼幸存者》的生存射击游戏!包含完整源码解析、角色系统设计、敌人AI逻辑等核心技术点,文末提供完整代码包下载!" 哈…

ArcGIS操作:13 生成最小外接矩阵

应用情景:筛选出屋面是否能放下12*60m的长方形,作为起降场候选点(一个不规则的形状内,判断是否能放下指定长宽的长方形) 1、面积初步筛选 Area ≥ 720 ㎡ 面积计算见 2、打开 ArcToolbox → Data Management Tools …

manus对比ChatGPT-Deep reaserch进行研究类学术相关数据分析!谁更胜一筹?

没有账号,只能挑选一个案例 一夜之间被这个用全英文介绍全华班出品的新爆款国产AI产品的小胖刷频。白天还没有切换语言的选项,晚上就加上了。简单看了看团队够成,使用很长实践的Monica创始人也在其中。逐渐可以理解,重心放在海外产…

Python —— pow()函数

一、示例1 # 计算 2 的 3 次幂 result1 pow(2, 3) print(result1) # 输出: 8# 计算 2.5 的 2 次幂 result2 pow(2.5, 2) print(result2) # 输出: 6.25 二、示例2 # 计算 (2 ** 3) % 5 result3 pow(2, 3, 5) print(result3) # 输出: 3 三、示例3 ntxt input("请输…

开发环境搭建-完善登录功能

一.完善登录功能 我们修改密码为md5中的格式,那么就需要修改数据库中的密码和将从前端获取到的密码转化成md5格式,然后进行比对。比对成功则登录成功,失败则禁止登录。 二.md5格式 使用DigestUtils工具类进行md5加密,调用md4Dig…

STM32G431RBT6--(3)片上外设及其关系

前边我们已经了解了STM32的内核,下面我们来介绍片上外设,对于这些外设,如果我们弄清楚一个单片机都有什么外设,弄清他们之间的关系,对于应用单片机有很大的帮助,我们以G431为例: 这个表格描述了…

docker 安装达梦数据库(离线)

docker安装达梦数据库,官网上已经下载不了docker版本的了,下面可通过百度网盘下载 通过网盘分享的文件:dm8_20240715_x86_rh6_rq_single.tar.zip 链接: https://pan.baidu.com/s/1_ejcs_bRLZpICf69mPdK2w?pwdszj9 提取码: szj9 上传到服务…

AI 驱动的软件测试革命:从自动化到智能化的进阶之路

🚀引言:软件测试的智能化转型浪潮 在数字化转型加速的今天,软件产品的迭代速度与复杂度呈指数级增长。传统软件测试依赖人工编写用例、执行测试的模式,已难以应对快速交付与高质量要求的双重挑战。人工智能技术的突破为测试领域注…

六轴传感器ICM-20608

ICM-20608-G是一个6轴传感器芯片,由3轴陀螺仪和3轴加速度计组成。陀螺仪可编程的满量程有:250,500,1000和2000度/秒。加速度计可编程的满量程有:2g,4g,8g和16g。学习Linux之SPI之前,…

TikTok Shop欧洲市场爆发,欧洲TikTok 运营网络专线成运营关键

TikTok在欧洲的影响力还在持续攀升,日前,TikTok发布了最新的欧盟执行和使用数据报告,报告中提到: 2024年7~12月期间,TikTok在欧盟地区的月活用户达1.591亿,较上一报告期(2024年10月发布&#xf…

专业工具,提供多种磁盘分区方案

随着时间的推移,电脑的磁盘空间往往会越来越紧张,许多人都经历过磁盘空间不足的困扰。虽然通过清理垃圾文件可以获得一定的改善,但随着文件和软件的增多,磁盘空间仍然可能显得捉襟见肘。在这种情况下,将其他磁盘的闲置…

你会测量管道液体流阻吗?西-魏斯巴赫方程(Darcy-Weisbach Equation)、Colebrook-White 方程帮你

测量管道液体流阻需要测量以下关键量: 需要测量的量 压力差(ΔP):管道入口和出口之间的压力差,通常通过压力传感器或差压计测量。流量(Q):流经管道的液体体积流量,可通…

SQL命令详解之多表查询(连接查询)

目录 1 简介 2 内连接查询 2.1 内连接语法 2.2 内连接练习 3 外连接查询 3.1 外连接语法 3.2 外连接练习 4 总结 1 简介 连接的本质就是把各个表中的记录都取出来依次匹配的组合加入结果集并返回给用户。我们把 t1 和 t2 两个表连接起来的过程如下图所示: …

导入 Excel 规则批量修改或删除 Excel 表格内容

我们前面介绍过按照规则批量修改 Excel 文档内容的操作,可以对大量的 Excel 文档按照一定的规则进行统一的修改,可以很好的解决我们批量修改 Excel 文档内容的需求。但是某些场景下,我们批量修改 Excel 文档内容的场景比较复杂,比…

字节码是由什么组成的?

Java字节码是Java程序编译后的中间产物,它是一种二进制格式的代码,可以在Java虚拟机(JVM)上运行。理解字节码的组成有助于我们更好地理解Java程序的运行机制。 1. Java字节码是什么? 定义 Java字节码是Java源代码经过…