Embedding技术:DeepWalkNode2vec

news2025/3/9 2:53:07

引言

在推荐系统中,Graph Embedding技术已经成为一种强大的工具,用于捕捉用户和物品之间的复杂关系。本文将介绍Graph Embedding的基本概念、原理及其在推荐系统中的应用。

什么是Graph Embedding?

Graph Embedding是一种将图中的节点映射到低维向量空间的技术。通过这种映射,图中的节点可以在向量空间中表示为密集的向量,从而方便进行各种机器学习任务,如分类、聚类和推荐。

在这里插入图片描述

Graph Embedding的基本原理

1. 图的表示

一个图 G = ( V , E ) G = (V, E) G=(V,E)由节点集合 V V V和边集合 E E E组成。在推荐系统中,节点可以表示用户或物品,边可以表示用户与物品之间的交互(如点击、购买等)。图可以是有向的或无向的,也可以是加权的(例如,边权重表示交互的强度)。

2. 目标函数

Graph Embedding的目标是学习一个映射函数 f : V → R d f: V \rightarrow \mathbb{R}^d f:VRd,将每个节点 v ∈ V v \in V vV映射到一个 d d d维的向量空间。这个映射函数通常通过优化以下目标函数来学习:

min ⁡ f ∑ ( u , v ) ∈ E L ( f ( u ) , f ( v ) ) \min_{f} \sum_{(u, v) \in E} \mathcal{L}(f(u), f(v)) fmin(u,v)EL(f(u),f(v))

其中, L \mathcal{L} L是损失函数,用于衡量节点 u u u v v v在向量空间中的相似性。常见的损失函数包括:

  • 负对数似然损失
    L ( f ( u ) , f ( v ) ) = − log ⁡ σ ( f ( u ) T f ( v ) ) \mathcal{L}(f(u), f(v)) = -\log \sigma(f(u)^T f(v)) L(f(u),f(v))=logσ(f(u)Tf(v))
    其中, σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1是sigmoid函数。

  • 欧氏距离损失
    L ( f ( u ) , f ( v ) ) = ∥ f ( u ) − f ( v ) ∥ 2 2 \mathcal{L}(f(u), f(v)) = \|f(u) - f(v)\|_2^2 L(f(u),f(v))=f(u)f(v)22

目标函数的核心思想是:如果两个节点在图中是相邻的(即存在边),那么它们在向量空间中的表示应该尽可能相似。

3. 常见的Graph Embedding方法

3.1 DeepWalk

DeepWalk是一种基于随机游走的Graph Embedding方法。它通过在图中进行随机游走,生成节点序列,然后使用Skip-gram模型来学习节点的向量表示。Skip-gram原理可以我前几篇Embedding生成文章
在这里插入图片描述

DeepWalk

给定一个起始节点 v i v_i vi,随机游走生成一个节点序列 v i 1 , v i 2 , … , v i k v_{i1}, v_{i2}, \dots, v_{ik} vi1,vi2,,vik,其中每个节点 v i j v_{ij} vij是从当前节点 v i ( j − 1 ) v_{i(j-1)} vi(j1)的邻居中随机选择的。(如上图所示)

Skip-gram模型

Skip-gram模型的目标是最大化给定中心节点 v i v_i vi时,其上下文节点 v i − w , … , v i + w v_{i-w}, \dots, v_{i+w} viw,,vi+w的条件概率。目标函数为:

min ⁡ f − log ⁡ P ( v i − w , … , v i + w ∣ f ( v i ) ) \min_{f} -\log P(v_{i-w}, \dots, v_{i+w} \mid f(v_i)) fminlogP(viw,,vi+wf(vi))

具体地,Skip-gram模型使用softmax函数来计算条件概率:

P ( v j ∣ v i ) = exp ⁡ ( f ( v j ) T f ( v i ) ) ∑ v k ∈ V exp ⁡ ( f ( v k ) T f ( v i ) ) P(v_j \mid v_i) = \frac{\exp(f(v_j)^T f(v_i))}{\sum_{v_k \in V} \exp(f(v_k)^T f(v_i))} P(vjvi)=vkVexp(f(vk)Tf(vi))exp(f(vj)Tf(vi))

由于直接计算softmax的分母计算量较大,通常采用负采样(Negative Sampling)来近似计算。负采样的目标函数为:

min ⁡ f − log ⁡ σ ( f ( v j ) T f ( v i ) ) − ∑ k = 1 K E v k ∼ P n ( v ) log ⁡ σ ( − f ( v k ) T f ( v i ) ) \min_{f} -\log \sigma(f(v_j)^T f(v_i)) - \sum_{k=1}^K \mathbb{E}_{v_k \sim P_n(v)} \log \sigma(-f(v_k)^T f(v_i)) fminlogσ(f(vj)Tf(vi))k=1KEvkPn(v)logσ(f(vk)Tf(vi))

其中, K K K是负采样数, P n ( v ) P_n(v) Pn(v)是负采样分布。

3.2 Node2Vec

Node2Vec是对DeepWalk的改进,它引入了广度优先搜索(BFS)和深度优先搜索(DFS)的策略,可以更好地捕捉图的局部和全局结构。
在这里插入图片描述

随机游走策略

在这里插入图片描述

Node2Vec的随机游走策略由两个参数控制,以使Embedding结果倾向于同质化(距离相近节点Embedding相似)或结构性(结构上相似节点Embedding应相似):

  • 返回参数 p p p:控制游走返回到前一个节点的概率。
  • 进出参数 q q q:控制游走远离前一个节点的概率。

具体地,Node2Vec的随机游走概率定义为:

P ( v j ∣ v i ) = { 1 p if  d i j = 0 1 if  d i j = 1 1 q if  d i j = 2 P(v_j \mid v_i) = \begin{cases} \frac{1}{p} & \text{if } d_{ij} = 0 \\ 1 & \text{if } d_{ij} = 1 \\ \frac{1}{q} & \text{if } d_{ij} = 2 \end{cases} P(vjvi)= p11q1if dij=0if dij=1if dij=2

其中, d i j d_{ij} dij是节点 v i v_i vi v j v_j vj之间的最短路径距离。

结构性和同质性

在node2vec算法中,通过精心调整p和q参数,可以巧妙地引导节点嵌入(Embedding)的方向,使其呈现出不同的特性。具体而言:

  • 若我们对网络节点的局部特征更为关注,倾向于让相近的节点在嵌入空间中具有相似的表示,那么可通过调整参数使节点Embedding更倾向于同质性,例如上图所示的网络节点Embedding情况;

  • 反之,若我们更重视网络的全局结构特征,希望结构相近的节点在嵌入空间中能够彼此靠近,即使它们在实际网络中可能相隔较远,那么就可以像下图那样,使节点Embedding更倾向于结构性。这种灵活的参数调节机制,使得node2vec算法能够根据不同的任务需求和数据特点,生成更符合需求的节点嵌入表示,为后续的图分析和机器学习任务提供了强大的特征支持。
    在这里插入图片描述

目标函数

Node2Vec的目标函数与DeepWalk类似,但随机游走的策略更加灵活,能够更好地捕捉图的结构信息。目标函数为:

min ⁡ f − log ⁡ P ( v i − w , … , v i + w ∣ f ( v i ) ) \min_{f} -\log P(v_{i-w}, \dots, v_{i+w} \mid f(v_i)) fminlogP(viw,,vi+wf(vi))

Graph Embedding在推荐系统中的应用

1. 用户-物品图

在推荐系统中,用户与物品之间的交互行为(如点击、购买、评分等)可以自然地建模为一个用户-物品二分图(User-Item Bipartite Graph)。该图 G = ( V , E ) G = (V, E) G=(V,E) 中,节点集合 V V V 分为两部分:用户节点 U U U 和物品节点 I I I,边集合 E E E 表示用户与物品之间的交互。例如,边 ( u , i ) (u, i) (u,i) 表示用户 u u u 与物品 i i i 的交互行为,边的权重可以表示交互的强度(如点击次数或评分值)。

通过Graph Embedding技术,用户和物品可以被映射到同一个低维向量空间 R d \mathbb{R}^d Rd,从而将复杂的图结构转化为稠密的向量表示。这种表示不仅保留了用户与物品之间的显式交互关系,还能够捕捉隐式的高阶关系(如用户之间的相似性或物品之间的关联性)。

2. 推荐算法

基于Graph Embedding的推荐算法通常包括以下步骤:

  1. 构建用户-物品图
    根据用户与物品的交互数据构建二分图,明确节点和边的定义及其权重。

  2. 学习用户和物品的向量表示
    使用Graph Embedding方法(如DeepWalk、Node2Vec等)将用户和物品映射到低维向量空间,得到向量表示 f ( u ) f(u) f(u) f ( i ) f(i) f(i)

  3. 计算相似性并生成推荐列表
    对于目标用户 u u u,计算其向量 f ( u ) f(u) f(u) 与所有物品向量 f ( i ) f(i) f(i) 的相似性(如余弦相似度或点积),并根据相似性得分对物品排序,生成个性化推荐列表。

3. 优势

基于Graph Embedding的推荐系统具有以下显著优势:

  • 捕捉复杂关系
    Graph Embedding能够捕捉用户与物品之间的高阶相似性和隐式反馈。例如,通过随机游走或邻居聚合,可以发现用户之间或物品之间的潜在关联,从而提升推荐的准确性。

  • 可扩展性
    基于Graph Embedding的方法通常具有较高的可扩展性,能够处理大规模的用户-物品交互数据。例如,GraphSAGE通过邻居采样和聚合机制,降低了计算复杂度,适用于大规模图数据。

  • 灵活性
    Graph Embedding方法可以与其他推荐技术(如矩阵分解、深度学习等)结合,进一步提升推荐性能。例如,可以将Graph Embedding生成的向量作为输入特征,用于深度学习模型的训练。

  • 冷启动问题的缓解
    通过捕捉用户与物品之间的高阶关系,Graph Embedding能够为冷启动用户或物品提供更合理的推荐,缓解冷启动问题。

Reference

  1. 王喆《深度学习推荐系统》
  2. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online Learning of Social Representations. Stony Brook University Department of Computer Science.
  3. Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2311151.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于IMM算法的目标跟踪,四模型IMM|三维环境|4个模型分别是:CV、左转CT、右转CT、CA(基于EKF,订阅专栏后可获得完整源代码)

这段MATLAB代码实现了基于交互多模型(IMM)算法的目标跟踪,结合了四种运动模型(匀速直线、左转圆周、右转圆周和匀加速直线)。通过定义状态方程、生成带噪声的测量数据,以及执行IMM迭代,该代码有效地实现了多模型的状态估计和融合。最终,用户可以通过可视化结果观察目标…

前端开发10大框架深度解析

摘要 在现代前端开发中,框架的选择对项目的成功至关重要。本文旨在为开发者提供一份全面的前端框架指南,涵盖 React、Vue.js、Angular、Svelte、Ember.js、Preact、Backbone.js、Next.js、Nuxt.js 和 Gatsby。我们将从 简介、优缺点、适用场景 以及 实际…

图像形成与计算机视觉基础

1. 图像形成的基本原理 图像形成是物理世界与传感器(如胶片、CCD/CMOS)交互的过程,核心是光线的传播与记录。 1.1 直接放置胶片模型 物理原理:物体表面反射的光线直接照射到胶片上,但无任何遮挡或聚焦机制。 问题&a…

Spring Boot 缓存最佳实践:从基础到生产的完整指南

Spring Boot 缓存最佳实践:从基础到生产的完整指南 引言 在现代分布式系统中,缓存是提升系统性能的银弹。Spring Boot 通过 spring-boot-starter-cache​ 模块提供了开箱即用的缓存抽象,但如何根据业务需求实现灵活、可靠的缓存方案&#xf…

Ubuntu20.04双系统安装及软件安装(一):系统安装

Ubuntu20.04双系统安装及软件安装(一):系统安装 Ubuntu系统卸载Ubuntu20.04安装BIOS进入系统安装 许久没写博客了,今天开始重新回归了。首先记录我在双系统上重装Ubuntu20.04的安装过程记录以及个人见解。 Ubuntu系统卸载 参考双…

Linux14-io多路复用

UDP:单循环服务器,服务器同一时刻只能响应一个客户端的请求 TCP:并发服务器,服务器同一时刻只能响应多个客户端的请求 一、构建TCP并发服务器 让TCP服务端具备同时响应多个客户端的能力。 1.多进程 资源消耗大,同资源平台下,并发量小。 2.多线程 创建线程、进程,比…

Next.js项目实战-ai助手帮我写文章发布视频第1节(共89节)

😂Ai在国内外已经杀疯了,老板要求我们把速度再提升快一些,哪怕是几秒,几百毫秒也行~现在,马上就要,就地就要,只好搬出前端服务端(大保健)😓。没错,今天我要分…

探秘Transformer系列之(9)--- 位置编码分类

探秘Transformer系列之(9)— 位置编码分类 文章目录 探秘Transformer系列之(9)--- 位置编码分类0x00 概述0x01 区别1.1 从直观角度来看1.2 从模型处理角度来看1.3 优劣 0x02 绝对位置编码2.1 基础方案2.2 训练式2.3 三角函数式2.4…

笔记四:C语言中的文件和文件操作

Faye:只要有正确的伴奏,什么都能变成好旋律。 ---------《寻找天堂》 目录 一、文件介绍 1.1程序文件 1.2 数据文件 1.3 文件名 二、文件的打开和关闭 2.1 文件指针 2.2.文件的打开和关闭 2.3 文件读取结束的判定 三、 文件的顺序读写 3.1 顺序读写…

Zabbix+Deepseek实现AI告警分析(非本地部署大模型版)

目录 前言技术架构DeepSeek API获取1. 注册账号2. 申请API-Key Zabbix告警AI分析 实现1. 创建Scripts2. Scripts关键参数说明3. 需要注意 测试参考链接 前言 最近手伤了,更新频率下降…… 近期在Zabbix社区看到了一篇文章:张世宏老师分享的《Zabbix告警分…

国产NAS系统飞牛云fnOS深度体验:从运维面板到博客生态全打通

文章目录 前言1. 飞牛云本地部署1Panel2. 1Panel功能介绍3. 公网访问1Panel控制面板4. 固定1Panel公网地址5. 1Panel搭建Halo博客6. 公网访问Halo个人博客 前言 嘿,小伙伴们!是不是厌倦了服务器管理的繁琐和搭建个人网站的复杂?今天就来一场…

使用QT + 文件IO + 鼠标拖拽事件 + 线程 ,实现大文件的传输

第一题、使用qss&#xff0c;通过线程&#xff0c;使进度条自己动起来 mythread.h #ifndef MYTHREAD_H #define MYTHREAD_H#include <QObject> #include <QThread> #include <QDebug>class mythread : public QThread {Q_OBJECT public:mythread(QObject* …

博查搜索API日调用量突破3000万次,达到Bing API的1/3。

根据第三方机构统计&#xff0c;2024年Bing Search API 全球日均调用量为1.1亿次。截至2025年3月&#xff0c;博查 Search API日均调用量已达到3000万次&#xff08;约为Bing的1/3&#xff09;&#xff0c;承接着国内AI应用60%的联网搜索请求。

[内网安全] Windows 本地认证 — NTLM 哈希和 LM 哈希

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;SAM 文件 & Windows 本地认证流程 0x0101&#xff1a;SAM 文件简介 Windows 本地账户的登录密码是存储在系统本地的 SAM 文件中的&#xff0c;在登录 Windows 的时候&am…

输电线路杆塔倾斜智能监测:守护电网安全的智慧之眼

​ ​2023年夏&#xff0c;某超高压输电线路突发倒塔事故&#xff0c;导致三省市大面积停电&#xff0c;直接经济损失超2.3亿元。事后调查显示&#xff0c;杆塔倾斜角度早已超出安全阈值&#xff0c;但传统巡检未能及时发现。这个刺痛行业的案例&#xff0c;揭开了电力设施监…

探索.NET 10 的新特性,开发效率再升级!

前言 最近&#xff0c;.NET 10 发布啦&#xff0c;作为长期支持&#xff08;LTS&#xff09;版本&#xff0c;接下来的 3 年里它会给开发者们稳稳的幸福。今天咱就来唠唠它都带来了哪些超实用的新特性。可在指定链接下载。 新特性 下面将介绍了.NET 10的新特性&#xff0c;其…

算法·搜索

搜索问题 搜索问题本质也是暴力枚举&#xff0c;一般想到暴力也要想到利用回溯枚举。 排序和组合问题 回溯法 去重问题&#xff1a;定义全局变量visited还是局部变量visited实现去重&#xff1f; 回溯问题 图论中的搜索问题 与一般的搜索问题一致&#xff0c;只不过要多…

《水利水电安全员考试各题型对比分析及应对攻略》

《水利水电安全员考试各题型对比分析及应对攻略》 单选题&#xff1a; 特点&#xff1a;四个选项中只有一个正确答案&#xff0c;相对难度较小。主要考查对基础知识的掌握程度。 应对攻略&#xff1a;认真审题&#xff0c;看清题目要求。对于熟悉的知识点&#xff0c;直接选择…

鸿蒙HarmonyOS-Navagation基本用法

Navagation基本用法 Navigation组件是路由导航的根视图容器&#xff0c;一般作为Page页面的根容器使用&#xff0c;其内部默认包含了标题栏&#xff0c;内容栏和公工具栏&#xff0c;其中内容区默认首页显示导航内容&#xff08;Navigation的子组件&#xff09;或非首页显示&am…

【AI深度学习网络】卷积神经网络(CNN)入门指南:从生物启发的原理到现代架构演进

深度神经网络系列文章 【AI深度学习网络】卷积神经网络&#xff08;CNN&#xff09;入门指南&#xff1a;从生物启发的原理到现代架构演进【AI实践】基于TensorFlow/Keras的CNN&#xff08;卷积神经网络&#xff09;简单实现&#xff1a;手写数字识别的工程实践 引言 在当今…