直接法估计相机位姿

news2025/3/6 23:43:10

引入

在前面的文章:运动跟踪——Lucas-Kanade光流中,我们了解到特征点法存在一些缺陷,并且用光流法追踪像素点的运动来替代特征点法进行特征点匹配的过程来解决这些缺陷。而这篇文章要介绍的直接法则是通过计算特征点在下一时刻图像中的位置来进一步缩短算法计算时间。

直接法估计相机位姿的推导

直接法求解相机运动
直接法通过最小化相邻图像之间的光度误差来优化位姿参数。以下是推导过程:


1. 问题建模

设参考帧图像为 I ref I_{\text{ref}} Iref,当前帧图像为 I cur I_{\text{cur}} Icur,相机的位姿变换为 T ∈ SE ( 3 ) T \in \text{SE}(3) TSE(3),用李代数 ξ ∈ s e ( 3 ) \xi \in \mathfrak{se}(3) ξse(3)参数化。对于参考帧中的每个像素点 p i \mathbf{p}_i pi,其对应的3D点坐标为 P i \mathbf{P}_i Pi,投影到当前帧中的坐标为:
p i ′ = π ( T ⋅ P i ) \mathbf{p}_i' = \pi\left(T \cdot \mathbf{P}_i\right) pi=π(TPi)
其中 π \pi π为投影函数, T = exp ⁡ ( ξ ∧ ) T = \exp(\xi^\wedge) T=exp(ξ)

光度误差定义为:
e i = I cur ( p i ′ ) − I ref ( p i ) e_i = I_{\text{cur}}(\mathbf{p}_i') - I_{\text{ref}}(\mathbf{p}_i) ei=Icur(pi)Iref(pi)
则优化目标是最小化总误差:
min ⁡ ξ ∑ i ∥ e i ∥ 2 \min_\xi \sum_i \| e_i \|^2 ξminiei2


2. 误差函数的导数

误差关于位姿的雅可比矩阵用链式求导为:
∂ e i ∂ ξ = ∂ I cur ∂ p i ′ ⋅ ∂ p i ′ ∂ ξ \frac{\partial e_i}{\partial \xi} = \frac{\partial I_{\text{cur}}}{\partial \mathbf{p}_i'} \cdot \frac{\partial \mathbf{p}_i'}{\partial \xi} ξei=piIcurξpi

(1) 图像梯度项

∂ I cur ∂ p i ′ = [ I x , I y ] \frac{\partial I_{\text{cur}}}{\partial \mathbf{p}_i'} = \left[ I_x, I_y \right] piIcur=[Ix,Iy]
其中 I x , I y I_x, I_y Ix,Iy 为当前帧在 p i ′ \mathbf{p}_i' pi处的图像梯度。

(2) 投影点对位姿的导数

投影函数 p i ′ = π ( exp ⁡ ( ξ ∧ ) P i ) \mathbf{p}_i' = \pi(\exp(\xi^\wedge) \mathbf{P}_i) pi=π(exp(ξ)Pi)的导数为:
∂ p i ′ ∂ ξ = ∂ π ∂ P ′ ⋅ ∂ P ′ ∂ ξ \frac{\partial \mathbf{p}_i'}{\partial \xi} = \frac{\partial \pi}{\partial \mathbf{P}'} \cdot \frac{\partial \mathbf{P}'}{\partial \xi} ξpi=PπξP
其中:

  • P ′ = T ⋅ P i \mathbf{P}' = T \cdot \mathbf{P}_i P=TPi为变换后的3D点。
  • ∂ π ∂ P ′ \frac{\partial \pi}{\partial \mathbf{P}'} Pπ为投影函数对3D点的导数:
    ∂ π ∂ P ′ = [ f x Z ′ 0 − f x X ′ Z ′ 2 0 f y Z ′ − f y Y ′ Z ′ 2 ] \frac{\partial \pi}{\partial \mathbf{P}'} = \begin{bmatrix} \frac{f_x}{Z'} & 0 & -\frac{f_x X'}{Z'^2} \\ 0 & \frac{f_y}{Z'} & -\frac{f_y Y'}{Z'^2} \end{bmatrix} Pπ=[Zfx00ZfyZ′2fxXZ′2fyY]
  • ∂ P ′ ∂ ξ \frac{\partial \mathbf{P}'}{\partial \xi} ξP为李代数扰动模型:
    ∂ P ′ ∂ ξ = [ I 3 × 3 − P ′ ∧ ] \frac{\partial \mathbf{P}'}{\partial \xi} = \begin{bmatrix} \mathbf{I}_{3\times3} & -\mathbf{P}'^{\wedge} \end{bmatrix} ξP=[I3×3P]
    其中 P ′ ∧ \mathbf{P}'^{\wedge} P为3D点的反对称矩阵。

3. 雅可比矩阵推导

结合上述结果,雅可比矩阵为:
J i = [ f x Z ′ 0 − f x X ′ Z ′ 2 f x X ′ Y ′ Z ′ 2 − f x ( 1 + X ′ 2 Z ′ 2 ) f x Y ′ Z ′ 0 f y Z ′ − f y Y ′ Z ′ 2 − f y ( 1 + Y ′ 2 Z ′ 2 ) f y X ′ Y ′ Z ′ 2 − f y X ′ Z ′ ] \mathbf{J}_i = \begin{bmatrix} \frac{f_x}{Z'} & 0 & -\frac{f_x X'}{Z'^2} & \frac{f_x X' Y'}{Z'^2} & -f_x\left(1 + \frac{X'^2}{Z'^2}\right) & \frac{f_x Y'}{Z'} \\ 0 & \frac{f_y}{Z'} & -\frac{f_y Y'}{Z'^2} & -f_y\left(1 + \frac{Y'^2}{Z'^2}\right) & \frac{f_y X' Y'}{Z'^2} & -\frac{f_y X'}{Z'} \end{bmatrix} Ji= Zfx00ZfyZ′2fxXZ′2fyYZ′2fxXYfy(1+Z′2Y′2)fx(1+Z′2X′2)Z′2fyXYZfxYZfyX


4. 优化求解

使用高斯-牛顿法迭代更新位姿:

  1. 计算残差:对每个点计算 e i = I cur ( p i ′ ) − I ref ( p i ) e_i = I_{\text{cur}}(\mathbf{p}_i') - I_{\text{ref}}(\mathbf{p}_i) ei=Icur(pi)Iref(pi)
  2. 构建雅可比矩阵:按上述公式计算每个点的 J i \mathbf{J}_i Ji
  3. 求解增量方程
    H = ∑ i J i T J i , b = − ∑ i J i T e i \mathbf{H} = \sum_i \mathbf{J}_i^T \mathbf{J}_i, \quad \mathbf{b} = -\sum_i \mathbf{J}_i^T e_i H=iJiTJi,b=iJiTei
    Δ ξ = H − 1 b \Delta \xi = \mathbf{H}^{-1} \mathbf{b} Δξ=H1b
  4. 更新位姿
    ξ ← ξ + Δ ξ \xi \leftarrow \xi + \Delta \xi ξξ+Δξ

5. 关键点总结

  • 光度误差:基于灰度不变假设,直接比较像素亮度。
  • 李代数扰动模型:用于计算位姿变化对投影点的影响。
  • 雅可比矩阵:结合图像梯度和几何变换导数,指导优化方向。
  • 多尺度优化:还可以采用图像金字塔提高鲁棒性和收敛性。

通过迭代优化,直接法能够有效估计相机的位姿变化,适用于特征缺失的场景,但对光照变化和初始值敏感。
至此,关于视觉里程计即根据图像信息求解相机位姿变换的知识已经讲解完毕。接下来将进入后端优化的学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2310759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VS2022C#windows窗体应用程序调用DeepSeek API

目录 一、创建DeepSeek API Key 二、创建窗体应用程序 三、设计窗体 1、控件拖放布局‌‌ 2、主窗体【Form1】设计 3、多行文本框【tbContent】 4、提交按钮【btnSubmit】 5、单行文字框 四、撰写程序 五、完整代码 六、运行效果 七、其它 一、创建DeepSeek API Ke…

kettle插件-高性能插入更新插件Upsert

场景:假如T日需要将a表中T-1日的数据同步到b表。由于某种业务需求a表中已经同步到b表中的数据发生了变化需要重新同步,这个时候就会用到插入更新插件,也就是 说a表中数据重新同步b表,若b表中存在此数据(根据唯一id&am…

本地部署Qwen2.5-VL-7B-Instruct模型

本地部署Qwen2.5-VL-7B-Instruct模型 本地部署Permalink **创建环境** conda create -n qwenvl python3.11 -y# 报错: Solving environment: failedPackagesNotFoundError: The following packages are not available from current channels:# 处理: c…

【C++学习篇】智能指针

目录 1. 智能指针的使用场景分析 2. RAII和智能指针的设计思路 3. C标准库智能指针的使用 4.shared_ptr和weak_ptr 4.1shared_ptr的循环引用问题 4.2 weak_ptr 1. 智能指针的使用场景分析 下⾯程序中我们可以看到,new了以后,我们也delete了&#xff0c…

决策树(Decision Tree)基础知识

目录 一、回忆1、*机器学习的三要素:1)*函数族2)*目标函数2.1)*模型的其他复杂度参数 3)*优化算法 2、*前处理/后处理1)前处理:特征工程2)后处理:模型选择和模型评估 3、…

Excel基础(详细篇):总结易忽视的知识点,有用的细节操作

目录 写在前面基础篇Excel主要功能必会快捷键快捷键整理表LotusExcel的文件类型工作表基本操作表项操作选中与缩放边框线 自动添加边框线格式刷设置斜线表头双/多斜线表头不变形的:双/多斜线表头插入多行、多列单元格/行列的移动冻结窗口 方便查看数据打印的常见问题Excel格式…

Linux下学【MySQL】中如何实现:多表查询(配sql+实操图+案例巩固 通俗易懂版~)

每日激励:“不设限和自我肯定的心态:I can do all things。 — Stephen Curry” 绪论: 本章是MySQL篇中,非常实用性的篇章,相信在实际工作中对于表的查询,很多时候会涉及多表的查询,在多表查询的…

非平稳时间序列分析(三)——季节模型(SARIMA、STL、Holt-Winters)

此前篇章(平稳序列): 时间序列分析(一)——基础概念篇 时间序列分析(二)——平稳性检验 时间序列分析(三)——白噪声检验 时间序列分析(四)—…

【web前端开发】CSS--CSS简介及其编写位置(上)

1、CSS简介 (1)CSS的全称为:层叠式样式表(Cascading Style Sheets) (2)CSS也是一种标记语言,用于给HTML结构设置样式,例如:文字大小、颜色、元素宽度等等…

云原生时代的技术桥梁

在数字化转型的大潮中,企业面临着数据孤岛、应用间集成复杂、高成本与低效率等问题。这些问题不仅阻碍了企业内部信息的流通和资源的共享,也影响了企业对外部市场变化的响应速度。当前,这一转型过程从IT角度来看,已然迈入云原生时…

【数据结构】什么是栈||栈的经典应用||分治递归||斐波那契问题和归并算法||递归实现||顺序栈和链栈的区分

文章目录 🥧栈的初步理解:🥧易错:如何判断栈满🥧栈满理解🥧栈的基本运算📚栈操作的伪代码逻辑(顺序和链栈)📕顺序栈运算实现:顺序栈的表示&#x…

雷池WAF的为什么选择基于Docker

Docker 是一种开源的容器化平台,可以帮助开发人员将应用程序及其所有依赖项打包到一个称为容器的独立、可移植的环境中。Docker 的核心概念包括以下几点: 容器:Docker 使用容器来封装应用程序及其依赖项,使其能够在任何环境中都能…

Ubuntu20.04双系统安装及软件安装(七):Anaconda3

Ubuntu20.04双系统安装及软件安装(七):Anaconda3 打开Anaconda官网,在右侧处填写邮箱(要真实有效!),然后Submit。会出现如图示的Success界面。 进入填写的邮箱,有一封Ana…

文件上传漏洞:upload-labs靶场11-20

目录 pass-11 pass-12 pass-13 pass-14 pass-15 pass-16 pass-17 pass-18 pass-19 pass-20 pass-11 分析源代码 ,发现上传文件的存放路径可控 if(isset($_POST[submit])){$ext_arr array(jpg,png,gif);$file_ext substr($_FILES[upload_file][name],st…

HTTP协议(20250305)

1. 万维网 WWW(World Wide Web)世界范围内的,联机式的信息储藏所,万维网解决了获取互联网上的数据时需要解决的以下问题: 怎样标识分布在整个互联网上的文档 URL用什么样的协议实现万维网上的各种链接 HTTP怎么使用户能够方便的查看文档数…

Qt中txt文件输出为PDF格式

main.cpp PdfReportGenerator pdfReportGenerator;// 加载中文字体if (QFontDatabase::addApplicationFont(":/new/prefix1/simsun.ttf") -1) {QMessageBox::warning(nullptr, "警告", "无法加载中文字体");}// 解析日志文件QVector<LogEntr…

FPGA 高速接口Aurora8B/10B 协议详解与仿真

FPGA 高速接口Aurora8B/10B 协议详解与IP仿真 1 摘要 Aurora 8B/10B 是一种用于高速串行通信的协议&#xff0c;通常用于 FPGA 设计和其他数字通信应用。即一种编码方案&#xff0c;旨在在传输数据时提供可靠性、时钟恢复和错误检测。主要用于在点对点串行链路间移动数据的可…

【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘

摘要 支持向量机&#xff08;SVM&#xff09;是机器学习中的经典算法&#xff01;本文将深入解析最大间隔分类原理&#xff0c;手撕对偶问题推导过程&#xff0c;并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南&#xff0c;助力你掌握这一核心算法…

AORO P9000 PRO三防平板携手RTK高精度定位,电力巡检效率倍增

电网系统覆盖幅员辽阔&#xff0c;每年因设备故障导致的巡检耗时超过百万工日。传统巡检模式受限于定位误差、设备防护不足和作业效率低下三大核心痛点&#xff0c;亟需智能化工具的突破性革新。为了满足这一需求&#xff0c;遨游通讯推出AORO P9000 PRO三防平板&#xff0c;以…

游戏引擎学习第135天

仓库:https://gitee.com/mrxiao_com/2d_game_3 回顾 game_asset.cpp 的创建 在开发过程中&#xff0c;不使用任何现成的游戏引擎或第三方库&#xff0c;而是直接基于 Windows 进行开发&#xff0c;因为 Windows 目前仍然是游戏的标准平台&#xff0c;因此首先在这个环境中进行…