基于 Flink CDC YAML 的 MySQL 到 Kafka 流式数据集成

news2025/4/18 10:20:16

本教程的演示都将在 Flink CDC CLI 中进行,无需一行 Java/Scala 代码,也无需安装 IDE。

 

这篇教程将展示如何基于 Flink CDC YAML 快速构建 MySQL 到 Kafka 的 Streaming ELT 作业,包含整库同步、表结构变更同步演示和关键参数介绍。

准备阶段

准备 Flink Standalone 集群

  1. 1. 下载 Flink 1.19.2[1]压缩包,解压后并跳转至 Flink 目录下,设置 FLINK_HOME 为 flink-1.19.2 所在目录。

tar -zxvf  flink-1.19.2-bin-scala_2.12.tgz
export FLINK_HOME=$(pwd)/flink-1.19.2
  1. 2. 在 conf/config.yaml 文件追加下列参数开启 checkpoint,每隔 3 秒做一次 checkpoint。

execution:
    checkpointing:
        interval: 3000
  1. 3. 使用下面的命令启动 Flink 集群。

./bin/start-cluster.sh

启动成功后可以在 http://localhost:8081/访问到 Flink Web UI,如下图所示:

图片

重复执行 start-cluster.sh 可以拉起多个 TaskManager

注意:如果是在云服务器上运行,需要将 conf/config.yaml 里面 rest.bind-address 和 rest.address 的 localhost 改成0.0.0.0,然后使用 公网IP:8081 即可访问。

准备 Docker 环境

使用下面的内容新建一个 docker-compose.yml 文件:

services:
   Zookeeper:
  image: zookeeper:3.7.1
  ports:
    - "2181:2181"
  environment:
    - ALLOW_ANONYMOUS_LOGIN=yes
   Kafka:
  image: bitnami/kafka:2.8.1
  ports:
    - "9092:9092"
    - "9093:9093"
  environment:
    - ALLOW_PLAINTEXT_LISTENER=yes
    - KAFKA_LISTENERS=PLAINTEXT://:9092
    - KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.67.2:9092
    - KAFKA_ZOOKEEPER_CONNECT=192.168.67.2:2181
   MySQL:
  image: debezium/example-mysql:1.1
  ports:
    - "3306:3306"
  environment:
    - MYSQL_ROOT_PASSWORD=123456
    - MYSQL_USER=mysqluser
    - MYSQL_PASSWORD=mysqlpw

注意:文件里面的 192.168.67.2 为内网 IP,可通过 ifconfig 查找。

该 Docker Compose 中包含的组件有:
● MySQL: 包含商品信息的数据库app_db
● Kafka: 存储从 MySQL 中根据规则映射过来的结果表
● Zookeeper:主要用于进行Kafka集群管理和协调
在 docker-compose.yml 所在目录下执行下面的命令来启动上述组件:

docker-compose up -d

该命令以 detached 模式启动 Docker Compose 配置中定义的所有组件。可以通过 docker ps 来观察上述的组件是否正常启动。

图片

在 MySQL 数据库中准备数据

通过执行如下命令可以进入 MySQL 容器:

docker-compose exec MySQL mysql -uroot -p123456

创建数据库 app_db和表 orders,products,shipments 并插入数据:

-- 创建数据库
 CREATE DATABASE app_db;
   
 USE app_db;
   
 -- 创建 orders 表
 CREATE TABLE `orders` (
 `id` INT NOT NULL,
 `price` DECIMAL(10,2) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `orders` (`id`, `price`) VALUES (1, 4.00);
 INSERT INTO `orders` (`id`, `price`) VALUES (2, 100.00);

 -- 创建 shipments 表
 CREATE TABLE `shipments` (
 `id` INT NOT NULL,
 `city` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `shipments` (`id`, `city`) VALUES (1, 'beijing');
 INSERT INTO `shipments` (`id`, `city`) VALUES (2, 'xian');

 -- 创建 products 表
 CREATE TABLE `products` (
 `id` INT NOT NULL,
 `product` VARCHAR(255) NOT NULL,
 PRIMARY KEY (`id`)
 );

 -- 插入数据
 INSERT INTO `products` (`id`, `product`) VALUES (1, 'Beer');
 INSERT INTO `products` (`id`, `product`) VALUES (2, 'Cap');
 INSERT INTO `products` (`id`, `product`) VALUES (3, 'Peanut');

通过 Flink CDC CLI 提交任务

  1. 1. 下载压缩包并解压得到目录 flink-cdc-3.3.0;
    flink-cdc-3.3.0-bin.tar.gz[2]中包含 bin、lib、log、conf 四个目录。

  2. 2. 下载下面列出的 connector 包,并且移动到 lib 目录下:
    ■ MySQL pipeline connector 3.3.0[3]
    ■ Kafka pipeline connector 3.3.0[4]

您还需要将下面的 Driver 包放在 Flink lib 目录下,或通过 --jar 参数将其传入 Flink CDC CLI,因为 CDC Connectors 不再打包这个依赖:
■ MySQL Connector Java[5]
3. 编写任务配置 yaml 文件
下面给出了一个整库同步的示例文件 mysql-to-kafka.yaml:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
  topic: yaml-mysql-kafka

pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1

其中 source 中的 tables: app_db..* 通过正则匹配同步 app_db 下的所有表。
4. 最后,通过命令行提交任务到 Flink Standalone cluster

bash bin/flink-cdc.sh mysql-to-kafka.yaml
# 参考,一些自定义路径的示例  主要用于多版本flink,mysql驱动不一致等情况 如,
# bash /root/flink-cdc-3.3.0/bin/flink-cdc.sh /root/flink-cdc-3.3.0/bin/mysql-to-kafka.yaml --flink-home /root/flink-1.19. --jar /root/flink-cdc-3.3.0/lib/mysql-connector-java-8.0.27.jar

提交成功后,返回信息如:

Pipeline has been submitted to cluster.
Job ID: ba2afd0697524bd4857183936507b0bf
Job Description: MySQL to Kafka Pipeline

在 Flink Web UI,可以看到名为 MySQL to Kafka Pipeline 的任务正在运行。

通过 Kafka 客户端查看 Topic 数据,可得到debezium-json格式的内容:

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server 192.168.31.229:9092 --topic yaml-mysql-kafka --from-beginning

debezium-json 格式包含了 before/after/op/source 几个元素,示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 4
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
...
{
    "before": null,
    "after": {
        "id": 1,
        "product": "Beer"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
...
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

同步变更

进入 MySQL 容器:

docker-compose exec MySQL mysql -uroot -p123456

接下来,修改 MySQL 数据库中表的数据,StarRocks 中显示的订单数据也将实时更新:

  1. 1. 在 MySQL 的 orders 表中插入一条数据

INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
  1. 2. 在 MySQL 的 orders 表中增加一个字段

ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
  1. 3. 在 MySQL 的 orders 表中更新一条数据

UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
  1. 4. 在 MySQL 的 orders 表中删除一条数据

DELETE FROM app_db.orders WHERE id=2;

通过 Kafka 消费者监控 Topic,可以看到 Kafka 上也在实时接收到这些变更:

{
    "before": {
        "id": 1,
        "price": 4,
        "amount": null
    },
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "u",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}

同样地,去修改 shipments, products 表,也能在 Kafka对应的 Topic 中实时看到同步变更的结果。

特色功能

路由变更

Flink CDC 提供了将源表的表结构/数据路由到其他表名的配置,借助这种能力,我们能够实现表名库名替换,整库同步等功能。下面提供一个配置文件说明:

################################################################################
# Description: Sync MySQL all tables to Kafka
################################################################################
source:
  type: mysql
  hostname: 0.0.0.0
  port: 3306
  username: root
  password: 123456
  tables: app_db.\.*
  server-id: 5400-5404
  server-time-zone: UTC

sink:
  type: kafka
  name: Kafka Sink
  properties.bootstrap.servers: 0.0.0.0:9092
pipeline:
  name: MySQL to Kafka Pipeline
  parallelism: 1
route:
 - source-table: app_db.orders
   sink-table: kafka_ods_orders
 - source-table: app_db.shipments
   sink-table: kafka_ods_shipments
 - source-table: app_db.products
   sink-table: kafka_ods_products

通过上面的 route 配置,会将 app_db.orders 表的结构和数据同步到 kafka_ods_orders 中。从而实现数据库迁移的功能。特别地,source-table 支持正则表达式匹配多表,从而实现分库分表同步的功能,例如下面的配置:

route:
  - source-table: app_db.order\.*
    sink-table: kafka_ods_orders

这样,就可以将诸如 app_db.order01、app_db.order02、app_db.order03 的表汇总到 kafka_ods_orders 中。利用 Kafka 自带的工具,可查看对应 Topic 的建立,详情可使用 kafka-console-consumer.sh 进行查询。

docker-compose exec Kafka kafka-topics.sh --bootstrap-server 192.168.67.2:9092 --list

Kafka 中新建的 Topic 信息如下:

__consumer_offsets
kafka_ods_orders
kafka_ods_products
kafka_ods_shipments
yaml-mysql-kafka

选取 kafka_ods_orders 这个 Topic 进行查询,返回数据示例如下:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": null,
        "table": "kafka_ods_orders"
    }
}

写入多个分区

使用 partition.strategy 参数可以定义发送数据到 Kafka 分区的策略, 可以设置的选项有:
● all-to-zero(将所有数据发送到 0 号分区),默认值
● hash-by-key(所有数据根据主键的哈希值分发)
我们基于 mysql-to-kafka.yaml 在sink下增加一行配置: partition.strategy: hash-by-key

source:
  ...
sink:
  ...
  topic: yaml-mysql-kafka-hash-by-key
  partition.strategy: hash-by-key
pipeline:
  ...

同时我们利用 Kafka 的脚本新建一个 12 分区的 Kafka Topic:

docker-compose exec Kafka kafka-topics.sh --create --topic yaml-mysql-kafka-hash-by-key --bootstrap-server 192.168.67.2:9092  --partitions 12

提交 YAML 作业后,查看一下各个分区里面所存储的数据。

docker-compose exec Kafka kafka-console-consumer.sh --bootstrap-server=192.168.67.2:9092  --topic yaml-mysql-kafka-hash-by-key  --partition 0  --from-beginning

部分分区数据详情如下:

  • • 分区0

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
  • • 分区4

{
    "before": null,
    "after": {
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
{
    "before": null,
    "after": {
        "id": 1,
        "city": "beijing"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

输出格式

value.format 参数用于序列化 Kafka 消息的值部分数据的格式。可选的填写值包括 debezium-json和 canal-json,默认值为 debezium-json,目前还不支持用户自定义输出格式。
debezium-json  [6]格式会包含 before(变更前的数据)/after(变更后的数据)/op(变更类型)/source(元数据) 几个元素,ts_ms 字段并不会默认包含在输出结构中(需要在 Source 中指定 metadata.list 配合)。canal-json  [7]格式会包含 old/data/type/database/table/pkNames 几个元素,但是 ts 并不会默认包含在其中(原因同上)。
可以在 YAML 文件的 sink 中定义 value.format: canal-json 来指定输出格式为 canal-json 类型:

source:
  ...

sink:
  ...
  topic: yaml-mysql-kafka-canal
  value.format: canal-json
pipeline:
  ...
查询对应 topic 的数据,返回示例如下:
{
    "old": null,
    "data": [
        {
            "id": 1,
            "price": 100,
            "amount": "100.00"
        }
    ],
    "type": "INSERT",
    "database": "app_db",
    "table": "orders",
    "pkNames": [
        "id"
    ]
}

自定义上下游映射关系

使用 sink.tableId-to-topic.mapping 参数可以指定上游表名到下游 Kafka Topic 名的映射关系。无需使用 route 配置。与之前介绍的通过 route 实现的不同点在于,配置该参数可以在保留源表的表名信息的情况下设置写入的 Topic 名称。
在前面的 YAML 文件中增加 sink.tableId-to-topic.mapping 配置指定映射关系,每个映射关系由 ; 分割,上游表的 TableId 和下游 Kafka 的 Topic 名由 : 分割:

source:
  ...

sink:
  ...
  sink.tableId-to-topic.mapping: app_db.orders:yaml-mysql-kafka-orders;app_db.shipments:yaml-mysql-kafka-shipments;app_db.products:yaml-mysql-kafka-products
pipeline:
  ...

运行后,Kafka 中将会生成如下的 Topic:

...
yaml-mysql-kafka-orders
yaml-mysql-kafka-products
yaml-mysql-kafka-shipments

上述 3 个 Topic 中的部分数据详情:

{
    "before": null,
    "after": {
        "id": 1,
        "price": 100,
        "amount": "100.00"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "orders"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "product": "Cap"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "products"
    }
}
{
    "before": null,
    "after": {
        "id": 2,
        "city": "xian"
    },
    "op": "c",
    "source": {
        "db": "app_db",
        "table": "shipments"
    }
}

环境清理

本教程结束后,在 docker-compose.yml 文件所在的目录下执行如下命令停止所有容器:

docker-compose down

在 Flink 所在目录 flink-1.19.2 下执行如下命令停止 Flink 集群:

./bin/stop-cluster.sh

参考资料

[1]

Flink 1.19.2: https://archive.apache.org/dist/flink/flink-1.19.2/flink-1.19.2-bin-scala_2.12.tgz

[2]

flink-cdc-3.3.0-bin.tar.gz: https://www.apache.org/dyn/closer.lua/flink/flink-cdc-3.3.0/flink-cdc-3.3.0-bin.tar.gz

[3]

MySQL pipeline connector 3.3.0: https://repo1.maven.org/maven2/org/apache/flink/flink-cdc-pipeline-connector-mysql/3.3.0/flink-cdc-pipeline-connector-mysql-3.3.0.jar

[4]

Kafka pipeline connector 3.3.0: https://repo1.maven.org/maven2/org/apache/flink/flink-cdc-pipeline-connector-kafka/3.3.0/flink-cdc-pipeline-connector-kafka-3.3.0.jar

[5]

MySQL Connector Java: https://repo1.maven.org/maven2/mysql/mysql-connector-java/8.0.27/mysql-connector-java-8.0.27.jar

[6]

debezium-json: https://debezium.io/documentation/reference/stable/integrations/serdes.html

[7]

canal-json: https://github.com/alibaba/canal/wiki


基于 Flink CDC 打造企业级实时数据同步方案


相比于传统数据集成流水线,Flink CDC 提供了全量和增量一体化同步的解决方案。对于一个同步任务,只需使用一个 Flink 作业即可将上游的全量数据和增量数据一致地同步到下游系统。此外, Flink CDC 使用了增量快照算法,无需任何额外配置即可实现全量和增量数据的无缝切换。

现推出“Flink CDC 挑战任务”参与挑战不仅可快速体验《基于 Flink CDC 打造企业级实时数据同步方案》,限时上传任务截图还可获得精美礼品。

 点击即可跳转:Flink CDC 挑战任务

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2309210.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解决 ERROR 1130 (HY000): Host is not allowed to connect to this MySQL server

当使用 MySQL 时,您可能会遇到错误信息“ERROR 1130 (HY000): Host ‘hostname’is not allowed to connect to this MySQL server”这是 MySQL 用于防止未经授权的访问的标准安全特性。实际上,服务器还没有配置为接受来自相关主机的连接。 Common Caus…

科普|无人机专业术语

文章目录 前言一、飞控二、电调三、通道四、2S、3S、4S电池五、电池后面C是什么意思?六、电机的型号七、什么是电机的KV值?八、螺旋桨的型号九、电机与螺旋桨的搭配 前言 无人机飞控系统控制飞行姿态,电调控制电机转速,遥控器通道控制飞行动作。电池C…

Qt:窗口

目录 菜单栏 QMenuBar 菜单添加快捷键 添加子菜单 添加分割线和添加图标 QMenuBar创建方式 工具栏 QToolBar 和菜单栏搭配 创建多个工具栏 状态栏 QStatusBar 状态栏中添加其他控件 浮动窗口 QDockWidget 对话框 对话框的内存释放问题 自定义对话框界面 模态对话…

深入浅出 Go 语言:协程(Goroutine)详解

深入浅出 Go 语言:协程(Goroutine)详解 引言 Go 语言的协程(goroutine)是其并发模型的核心特性之一。协程允许你轻松地编写并发代码,而不需要复杂的线程管理和锁机制。通过协程,你可以同时执行多个任务,并…

Python从0到100(八十九):Resnet、LSTM、Shufflenet、CNN四种网络分析及对比

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

实验:k8s+keepalived+nginx+iptables

1、创建两个nginx的pod,app都是nginx nginx1 nginx2 2、创建两个的pod的service 3、配置两台keepalived的调度器和nginx七层反向代理,VIP设置192.168.254.110 keepalived调度器master keepalived调度器backup 两台调度器都配置nginx七层反向代理&#…

LlamaFactory-webui:训练大语言模型的入门级教程

LlamaFactory是一个开源框架,支持多种流行的语言模型,及多种微调技术,同时,以友好的交互式界面,简化了大语言模型的学习。 本章内容,从如何拉取,我已经搭建好的Llamafactory镜像开始&#xff0…

手机打电话时如何识别对方按下的DTMF按键的字符-安卓AI电话机器人

手机打电话时如何识别对方按下的DTMF按键的字符 --安卓AI电话机器人 一、前言 前面的篇章中,使用蓝牙电话拦截手机通话的声音,并对数据加工,这个功能出来也有一段时间了。前段时间有试用的用户咨询说:有没有办法在手机上&#xff…

基于SpringBoot和PostGIS的省域“地理难抵点(最纵深处)”检索及可视化实践

目录 前言 1、研究背景 2、研究意义 一、研究目标 1、“地理难抵点”的概念 二、“难抵点”空间检索实现 1、数据获取与处理 2、计算流程 3、难抵点计算 4、WebGIS可视化 三、成果展示 1、华东地区 2、华南地区 3、华中地区 4、华北地区 5、西北地区 6、西南地…

【Qt】详细介绍如何在Visual Studio Code中编译、运行Qt项目

Visual Studio Code一只用的顺手,写Qt的时候也能用VS Code开发就方便多了。 理论上也不算困难,毕竟Qt项目其实就是CMake(QMake的情况这里就暂不考虑了)项目,VS Code在编译、运行CMake项目还是比较成熟的。 这里笔者打…

本地部署大语言模型-DeepSeek

DeepSeek 是国内顶尖 AI 团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称"AI界的六边形战士"。 Hostease AMD 9950X/96G/3.84T NVMe/1G/5IP/RTX4090 GPU服务器提供多种计费模式。 DeepSeek-R1-32B配置 配置项 规…

SQLAlchemy系列教程:SQLAlchemy快速入门示例项目

SQLAlchemy是与数据库交互的Python开发人员不可或缺的库。这个强大的ORM允许使用python结构进行简单的数据库操作。设置过程很简单,并且允许可扩展的数据库应用程序开发。本文通过入门项目完整介绍SQLAlchemy的应用过程,包括安装依赖包,创建连…

【Linux网络#10】:Https协议原理

📃个人主页:island1314 🔥个人专栏:Linux—登神长阶 ⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞 生活总是不会一帆风顺&#xf…

蓝桥杯备考:记忆化搜索之function

这道题是有重复的问题的&#xff0c;所以我们可以选择记忆化搜索 #include <iostream> using namespace std; typedef long long LL; const int N 25; LL ret[N][N][N]; LL dfs(LL a,LL b, LL c) {if(a<0 || b<0 || c<0) return 1;if(a>20 || b>20 || c…

mysql 全方位安装教程

下载 MySQL 【官网下载地址】 注意要选择较大的哪个安装包&#xff0c;小的安装包是一个安装器。 我们不用登录&#xff0c;直接下载 直接运行下载好的安装包 MySQL如果是 安装包安装, 可以图形化界面自主配置 如果是压缩包解压, 可以配置 配置文件, 可以解压安装到指定的…

设计模式Python版 观察者模式

文章目录 前言一、观察者模式二、观察者模式示例 前言 GOF设计模式分三大类&#xff1a; 创建型模式&#xff1a;关注对象的创建过程&#xff0c;包括单例模式、简单工厂模式、工厂方法模式、抽象工厂模式、原型模式和建造者模式。结构型模式&#xff1a;关注类和对象之间的组…

如何在Python用Plot画出一个简单的机器人模型

如何在Python中使用 Plot 画出一个简单的模型 在下面的程序中&#xff0c;首先要知道机器人的DH参数&#xff0c;然后计算出每一个关节的位置&#xff0c;最后利用 plot 函数画出关节之间的连杆就可以了&#xff0c;最后利用 animation 库来实现一个动画效果。 import matplo…

如何使用ArcGIS Pro制作横向图例:详细步骤与实践指南

ArcGIS Pro&#xff0c;作为Esri公司推出的新一代地理信息系统&#xff08;GIS&#xff09;平台&#xff0c;以其强大的功能和灵活的操作界面&#xff0c;在地理数据处理、地图制作和空间分析等领域发挥着重要作用。 在地图制作过程中&#xff0c;图例作为地图的重要组成部分&…

【Python 数据结构 3.顺序表】

目录 一、顺序表基本概念 1.顺序表的概念 2.顺序表的元素插入 元素插入的步骤 3.顺序表的元素删除 元素删除的步骤 4.顺序表的元素查找 元素查找的步骤 5.顺序表的元素索引 元素索引的步骤 6.顺序表的元素修改 元素修改的步骤 二、Python中的顺序表 1.顺序表的定义 2.顺序表的插…

SQL经典题型

查询不在表里的数据&#xff0c;一张学生表&#xff0c;一张学生的选课表&#xff0c;要求查出没有选课的学生&#xff1f; select students.student_name from students left join course_selection on students.student_idcourse_selection.student_id where course_selecti…