支持向量机(Support Vector Machine,SVM)详细解释(带示例)

news2025/3/3 5:10:03

目录

基本概念

线性可分情况

线性不可分情况

工作原理

示例

Python 案例

代码解释


基本概念

支持向量机是一种有监督的机器学习算法,可用于分类和回归任务。在分类问题中,SVM 的目标是找到一个最优的超平面,将不同类别的样本分隔开来,并且使得两类样本到该超平面的间隔最大。这个超平面被称为最大间隔超平面,而那些离超平面最近的样本点被称为支持向量,它们决定了超平面的位置和方向。

线性可分情况

当数据是线性可分的,即存在一个超平面能够完全将不同类别的样本分开时,SVM 会寻找一个具有最大间隔的超平面。假设我们有一个二维数据集,包含两类样本,此时的超平面就是一条直线。SVM 会找到这样一条直线,使得两类样本到该直线的距离(间隔)最大。

线性不可分情况

在实际应用中,数据往往是线性不可分的,即不存在一个超平面能够完美地将不同类别的样本分开。为了解决这个问题,SVM 引入了核函数和软间隔的概念。

  • 核函数:通过将原始数据映射到一个更高维的特征空间,使得数据在新的空间中变得线性可分。常见的核函数有线性核、多项式核、高斯核(RBF 核)等。
  • 软间隔:允许部分样本点落在间隔带内甚至错误分类,通过引入一个惩罚参数 C 来控制这种错误分类的程度。 C 值越大,对错误分类的惩罚越严重; C 值越小,允许更多的样本点被错误分类。
工作原理

SVM 的核心是求解一个凸二次规划问题,以找到最优的超平面。对于线性可分问题,其目标是最大化间隔;对于线性不可分问题,目标是在最大化间隔的同时,最小化错误分类的样本数量。

示例

假设我们有一个简单的二维数据集,包含两类样本:红色点和蓝色点。在二维平面上,这些点可能分布得比较杂乱,无法用一条直线直接将它们分开。通过使用核函数(如高斯核),我们可以将这些二维数据映射到一个更高维的空间中,在这个高维空间中,可能就存在一个超平面能够将红色点和蓝色点分开。

Python 案例

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载鸢尾花数据集
iris = datasets.load_iris()
# 只选取前两个特征,方便可视化
X = iris.data[:, :2]
y = iris.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建 SVM 分类器,使用径向基核函数(RBF)
svm_classifier = SVC(kernel='rbf', C=1.0, gamma='scale')

# 训练模型
svm_classifier.fit(X_train, y_train)

# 预测测试集
y_pred = svm_classifier.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"支持向量机模型的准确率: {accuracy:.2f}")

# 可视化决策边界
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))
Z = svm_classifier.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, alpha=0.4)
plt.scatter(X[:, 0], X[:, 1], c=y, alpha=0.8)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title('SVM Decision Boundary')
plt.show()

代码解释

  1. 数据加载与预处理:使用 datasets.load_iris() 加载鸢尾花数据集,并只选取前两个特征用于可视化。然后使用 train_test_split 函数将数据集划分为训练集和测试集。
  2. 模型创建与训练:创建一个 SVM 分类器 SVC,使用径向基核函数(RBF),并设置惩罚参数 C=1.0 和核系数 gamma='scale'。然后使用训练集数据对模型进行训练。
  3. 模型预测与评估:使用训练好的模型对测试集进行预测,并使用 accuracy_score 函数计算预测结果的准确率。
  4. 可视化决策边界:通过生成网格点,使用训练好的模型对网格点进行预测,然后绘制决策边界和样本点,直观展示 SVM 的分类效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2308756.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于javaweb的SpringBoot在线动漫信息平台系统设计和实现(源码+文档+部署讲解)

技术范围:SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论…

【Qt】MVC设计模式

目录 一、搭建MVC框架 二、创建数据库连接单例类SingleDB 三、数据库业务操作类model设计 四、control层,关于model管理类设计 五、view层即为窗口UI类 一、搭建MVC框架 里面的bin、lib、database文件夹以及sqlite3.h与工程后缀为.pro文件的配置与上次发的文章…

ARM 处理器平台 eMMC Flash 存储磨损测试示例

By Toradex秦海 1). 简介 目前工业嵌入式 ARM 平台最常用的存储器件就是 eMMC Nand Flash 存储,而由于工业设备一般生命周期都比较长,eMMC 存储器件的磨损寿命对于整个设备来说至关重要,因此本文就基于 NXP i.MX8M Mini ARM 处理器平台演示…

本地部署DeepSeek-R1(Dify发件邮箱、找回密码、空间名称修改)

Dify配置发件邮箱 DIfy默认邮箱配置为空,在邀请团队成员注册时是不会发送邀请链接的,只能通过手动复制生成的注册链接发送给对应的人去注册设置密码。 这样很麻烦,并且在找回密码时也接收不了邮件,无法重置密码。 找到本地部署…

EasyRTC:支持任意平台设备的嵌入式WebRTC实时音视频通信SDK解决方案

随着互联网技术的飞速发展,实时音视频通信已成为各行各业数字化转型的核心需求之一。无论是远程办公、在线教育、智慧医疗,还是智能安防、直播互动,用户对低延迟、高可靠、跨平台的音视频通信需求日益增长。 一、WebRTC与WebP2P:实…

数据库数据恢复—SQL Server附加数据库报错“错误 823”怎么办?

SQL Server数据库附加数据库过程中比较常见的报错是“错误 823”,附加数据库失败。 如果数据库有备份则只需还原备份即可。但是如果没有备份,备份时间太久,或者其他原因导致备份不可用,那么就需要通过专业手段对数据库进行数据恢复…

HTMLS基本结构及标签

HTML5是目前制作网页的核心技术&#xff0c;有叫超文本标记语言。 基本结构 声明部分位于文档的最前面&#xff0c;用于向浏览器说明当前文档使用HTML标准规范。 根部标签位于声明部分后&#xff0c;用于告知浏览器这是一个HTML文档。< html>表示文档开始&#xff0c;&l…

IDEA集成DeepSeek,通过离线安装解决无法安装Proxy AI插件问题

文章目录 引言一、安装Proxy AI1.1 在线安装Proxy AI1.2 离线安装Proxy AI 二、Proxy AI中配置DeepSeek2.1 配置本地部署的DeepSeek&#xff08;Ollama方式&#xff09;2.2 通过第三方服务商提供的API进行配置 三、效果测试 引言 许多开发者尝试通过安装Proxy AI等插件将AI能力…

phpstudy安装教程dvwa靶场搭建教程

GitHub - digininja/DVWA: Damn Vulnerable Web Application (DVWA) Dvwa下载地址 Windows版phpstudy下载 - 小皮面板(phpstudy) 小皮下载地址 1选择windows 版本&#xff0c;点击立即下载 下载完成&#xff0c;进行解压&#xff0c;注意不要有中文路径 点击.exe文件进行安装…

【linux】详谈 环境变量

目录 一、基本概念 二、常见的环境变量 取消环境变量 三、获取环境变量 通过代码获取环境变量 环境变量的特性 1. getenv函数:获取指定的环境变量 2. environ获取环境变量 四、本地变量 五、定义环境变量的方法 临时定义&#xff08;仅对当前会话有效&#xff09; 永…

【Linux高级IO】多路转接(poll epoll)

目录 1. poll 2. epoll 2.1 epoll_ctl 2.2 epoll_wait 2.3 epoll原理 2.4 epoll的工作模式 2.5 epoll的惊群效应 使用建议 总结 1. poll poll也是实现 I/O 多路复用的系统调用&#xff0c;可以解决select等待fd上限的问题&#xff0c;将输入输出参数分离&#xff0c;不需要…

供应链管理系统--升鲜宝门店收银系统功能解析,登录、主界面、会员 UI 设计图(一)

供应链管理系统--升鲜宝门店收银系统功能解析&#xff0c;登录、主界面 会员 UI 设计图&#xff08;一&#xff09;

【Linux系统编程】基础IO--磁盘文件

目录 前言 磁盘的机械构成 盘片介绍 盘片与磁头 数据的存储&#xff08;硬件&#xff09; 磁盘的物理存储 逻辑结构&#xff1a;磁道/柱面、扇面、扇区 磁盘I/O的基本单位与扇区的存储密度 CHS定位法&#xff1a;数据的查找 磁盘的逻辑存储 扇区的抽象结构(数据…

C# .NET Core HttpClient 和 HttpWebRequest 使用

HttpWebRequest 这是.NET创建者最初开发用于使用HTTP请求的标准类。HttpWebRequest是老版本.net下常用的&#xff0c;较为底层且复杂&#xff0c;访问速度及并发也不甚理想&#xff0c;但是使用HttpWebRequest可以让开发者控制请求/响应流程的各个方面&#xff0c;如 timeouts,…

[3/11]C#性能优化-实现 IDisposable 接口-每个细节都有示例代码

[3]C#性能优化-实现 IDisposable 接口-每个细节都有示例代码 前言 在C#开发中&#xff0c;性能优化是提升系统响应速度和资源利用率的关键环节。 当然&#xff0c;同样是所有程序的关键环节。 通过遵循下述建议&#xff0c;可以有效地减少不必要的对象创建&#xff0c;从而减…

1.C语言初识

C语言初识 C语言初识基础知识hello world数据类型变量、常量变量命名变量分类变量的使用变量的作用域 常量字符字符串转义字符 选择语句循环语句 函数&#xff1b;数组函数数组数组下标 操作符操作符算术操作符移位操作符、位操作符赋值操作符单目操作符关系操作符逻辑操作符条…

软件测试中的BUG

文章目录 软件测试的生命周期BugBug 的概念描述 Bug 的要素案例Bug 级别Bug 的生命周期与开发产生争执怎么办&#xff1f;【高频面试题】先检查自身&#xff0c;Bug 是否描述的不清楚站在用户角度考虑并抛出问题Bug 的定级要有理有据提⾼自身技术和业务水平&#xff0c;做到不仅…

TinyEngine v2.2版本发布:支持页面嵌套路由,提升多层级路由管理能力开发分支调整

2025年春节假期已过&#xff0c;大家都带着慢慢的活力回到了工作岗位。为了让大家在新的一年继续感受到 Tiny Engine 的成长与变化&#xff0c;我们很高兴地宣布&#xff1a;TinyEngine v2.2版本正式发布&#xff01;本次更新带来了重要的功能增强------页面支持嵌套路由&#…

Web自动化之Selenium添加网站Cookies实现免登录

在使用Selenium进行Web自动化时&#xff0c;添加网站Cookies是实现免登录的一种高效方法。通过模拟浏览器行为&#xff0c;我们可以将已登录状态的Cookies存储起来&#xff0c;并在下次自动化测试或爬虫任务中直接加载这些Cookies&#xff0c;从而跳过登录步骤。 Cookies简介 …

Storm实时流式计算系统(全解)——中

storm编程的基本概念-topo-spout-bolt 例如下&#xff1a; storm 编程接口-spout的结构及组件实现 storm编程案例-spout组件-实现 这是我的第一个组件&#xff08;spout组件继承BaseRichSput&#xff09;所有重写内部的三个方法&#xff0c;用于接收数据&#xff08;这里数据是…