OpenGL ES -> GLSurfaceView绘制点、线、三角形、正方形、圆(顶点法绘制)

news2025/2/26 20:20:36

XML文件

<?xml version="1.0" encoding="utf-8"?>
<com.example.myapplication.MyGLSurfaceView
	xmlns:android="http://schemas.android.com/apk/res/android"
    android:layout_width="match_parent"
    android:layout_height="match_parent" />

自定义GLSurfaceView代码

class MyGLSurfaceView(context: Context, attrs: AttributeSet) : GLSurfaceView(context, attrs) {
    private var mRenderer = MyGLRenderer()

    init {
        // 设置 OpenGL ES 3.0 版本
        setEGLContextClientVersion(3)
        setRenderer(mRenderer)
        // 设置渲染模式, 仅在需要重新绘制时才进行渲染,以节省资源
        renderMode = RENDERMODE_WHEN_DIRTY
    }
}

自定义GLSurfaceView.Renderer代码

class MyGLRenderer : GLSurfaceView.Renderer {
    private var mDrawData: DrawData? = null

    override fun onSurfaceCreated(gl: GL10?, config: EGLConfig?) {
        // 当 Surface 创建时调用, 进行 OpenGL ES 环境的初始化操作, 设置清屏颜色为青蓝色 (Red=0, Green=0.5, Blue=0.5, Alpha=1)
        GLES30.glClearColor(0.0f, 0.5f, 0.5f, 1.0f)
        mDrawData = DrawData().apply {
            initVertexBuffer()
            initShader()
        }
    }

    override fun onSurfaceChanged(gl: GL10?, width: Int, height: Int) {
        // 当 Surface 尺寸发生变化时调用,例如设备的屏幕方向发生改变, 设置视口为新的尺寸,视口是指渲染区域的大小
        GLES30.glViewport(0, 0, width, height)
        mDrawData?.computeMVPMatrix(width.toFloat(), height.toFloat())
    }

    override fun onDrawFrame(gl: GL10?) {
        // 每一帧绘制时调用, 清除颜色缓冲区
        GLES30.glClear(GLES30.GL_COLOR_BUFFER_BIT)
        mDrawData?.drawSomething()
    }
}

GLSurfaceView.Renderer需要的绘制数据

class DrawData {
    private var mProgram : Int = -1
    private var NO_OFFSET = 0
    private var VERTEX_POS_DATA_SIZE = 3
    // 最终变化矩阵
    private val mMVPMatrix = FloatArray(16)
    // 投影矩阵
    private val mProjectionMatrix = FloatArray(16)
    // 相机矩阵
    private val mViewMatrix = FloatArray(16)

    private var mViewPortRatio = 1f

    // 1. 准备顶点数据
    val vertex = floatArrayOf(
        -0.5f,  0.5f, 0.0f, // 左上
        -0.5f, -0.5f, 0.0f, // 左下
        0.5f, 0.5f, 0.0f, // 右上
        0.5f, -0.5f, 0.0f, // 右下
    )

    val vertexBuffer = ByteBuffer.allocateDirect(vertex.size * 4) // 分配直接内存
        .order(ByteOrder.nativeOrder()) // 使用小端, 即低地址存放低位数据, 高地址存放高位数据
        .asFloatBuffer()

    // 2. 创建顶点缓冲区对象(Vertex Buffer Object, VBO), 并上传顶点数据到缓冲区对象中
    fun initVertexBuffer(){
        vertexBuffer.put(vertex) // 将顶点数据放入 FloatBuffer
        vertexBuffer.position(0) // 在将数据放入缓冲区后,位置指针会指向缓冲区的末尾。重置位置指针为 0,使得在后续操作中可以从缓冲区的开始位置读取数据

        val vbo = IntArray(1)
        GLES30.glGenBuffers(1, vbo, 0) // 生成一个缓冲区对象ID,并存储在数组 vbo 中,存放位置为0
        GLES30.glBindBuffer(GLES30.GL_ARRAY_BUFFER, vbo[0]) // 绑定生成的顶点缓冲区对象,使其成为当前缓冲区操作的目标
        GLES30.glBufferData(
            GLES30.GL_ARRAY_BUFFER,
            vertex.size * 4, // 数据总字节数 = 顶点数 * Float占4字节
            vertexBuffer,
            GLES30.GL_STATIC_DRAW
        )
    }

    // 3. 初始化着色器程序
    fun initShader()  {
        val vertexShaderCode = """#version 300 es
                layout (location = 0) in vec4 aPosition;
                uniform mat4 uMVPMatrix; // 新增投影矩阵
                
                void main() {
                    gl_Position = uMVPMatrix * aPosition; // 应用投影变换
                }""".trimIndent()       // 顶点着色器代码

        val fragmentShaderCode = """#version 300 es
                precision mediump float;
                uniform vec4 vColor;
                out vec4 fragColor;
                
                void main() {
                  fragColor = vColor;
                }""".trimIndent()         // 片段着色器代码

        // 加载顶点着色器和片段着色器, 并创建着色器程序
        val vertexShader = LoadShaderUtil.loadShader(GLES30.GL_VERTEX_SHADER, vertexShaderCode)
        val fragmentShader = LoadShaderUtil.loadShader(GLES30.GL_FRAGMENT_SHADER, fragmentShaderCode)
        mProgram = GLES30.glCreateProgram()
        GLES30.glAttachShader(mProgram, vertexShader)
        GLES30.glAttachShader(mProgram, fragmentShader)
        GLES30.glLinkProgram(mProgram)
        GLES30.glUseProgram(mProgram)
    }

    // 4. 计算变换矩阵
    fun computeMVPMatrix(width: Float, height: Float) {
        // 正交投影矩阵
        takeIf { width > height }?.let {
            mViewPortRatio = width / height
            Matrix.orthoM(
                mProjectionMatrix, // 透视投影矩阵
                NO_OFFSET, // 偏移量
                -mViewPortRatio, // 近平面的坐标系左边界
                mViewPortRatio, // 近平面的坐标系右边界
                -1f, // 近平面的坐标系的下边界
                1f, // 近平面坐标系的上边界
                0f, // 近平面距离相机距离
                1f // 远平面距离相机距离
            )
        } ?: run {
            mViewPortRatio = height / width
            Matrix.orthoM(
                mProjectionMatrix, // 透视投影矩阵
                NO_OFFSET, // 偏移量
                -1f, // 近平面坐标系左边界
                1f, // 近平面坐标系右边界
                -mViewPortRatio, // 近平面坐标系下边界
                mViewPortRatio, // 近平面坐标系上边界
                0f, // 近平面距离相机距离
                1f // 远平面距离相机距离
            )
        }

        // 设置相机矩阵
        // 相机位置(0f, 0f, 1f)
        // 物体位置(0f, 0f, 0f)
        // 相机方向(0f, 1f, 0f)
        Matrix.setLookAtM(
            mViewMatrix, // 相机矩阵
            NO_OFFSET, // 偏移量
            0f, // 相机位置x
            0f, // 相机位置y
            1f, // 相机位置z
            0f, // 物体位置x
            0f, // 物体位置y
            0f, // 物体位置z
            0f, // 相机上方向x
            1f, // 相机上方向y
            0f // 相机上方向z
        )

        // 最终变化矩阵
        Matrix.multiplyMM(
            mMVPMatrix, // 最终变化矩阵
            NO_OFFSET, // 偏移量
            mProjectionMatrix, // 投影矩阵
            NO_OFFSET, // 投影矩阵偏移量
            mViewMatrix, // 相机矩阵
            NO_OFFSET // 相机矩阵偏移量
        )

        val matrixHandler = GLES30.glGetUniformLocation(mProgram, "uMVPMatrix")
        GLES30.glUniformMatrix4fv(matrixHandler, 1, false, mMVPMatrix, NO_OFFSET)
    }


    // 5. 使用着色器程序绘制图形
    fun drawSomething(){
        GLES30.glLineWidth(50.0f)
        // 获取顶点数据的位置, 并使用该位置的数据
        val positionHandle = GLES30.glGetAttribLocation(mProgram, "aPosition")
        GLES30.glEnableVertexAttribArray(positionHandle)
        GLES30.glVertexAttribPointer(positionHandle, VERTEX_POS_DATA_SIZE, GLES30.GL_FLOAT, false, 0, 0)

        // 设置片段着色器的颜色
        val colorHandle = GLES30.glGetUniformLocation(mProgram, "vColor")
        GLES30.glUniform4f(colorHandle, 1.0f, 0.5f, 0.5f, 1.0f) // 红色
        // 绘制图形
        GLES30.glDrawArrays(GLES30.GL_POINTS, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
        GLES30.glDisableVertexAttribArray(positionHandle)
    }
}

object LoadShaderUtil{
    // 创建着色器对象
    fun loadShader(type: Int, source: String): Int {
        val shader = GLES30.glCreateShader(type)
        GLES30.glShaderSource(shader, source)
        GLES30.glCompileShader(shader)
        return shader
    }
}

绘制点、线、三角形、正方形、圆

绘制点GLES30.GL_POINTS

// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)

GLES30.glDrawArrays(GLES30.GL_POINTS, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    在这里插入图片描述

绘制线

两个点绘制一条线间隔绘制GLES30.GL_LINES

  • 绘制顺序:将传入的坐标作为单独线条绘制,ABCDEFG六个顶点,绘制AB、CD、EF三条线
// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)
GLES30.glLineWidth(30f)
GLES30.glDrawArrays(GLES30.GL_LINES, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    在这里插入图片描述

两个点绘制一条线连续绘制GLES30.GL_LINE_STRIP

  • 绘制顺序:将传入的顶点作为折线绘制,ABCD四个顶点,绘制AB、BC、CD三条线
// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)
GLES30.glLineWidth(30f)
GLES30.glDrawArrays(GLES30.GL_LINE_STRIP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    在这里插入图片描述

两个点绘制一条线循环绘制GLES30.GL_LINE_LOOP

  • 绘制顺序:将传入的顶点作为闭合折线绘制,ABCD四个顶点,绘制AB、BC、CD、DA四条线
// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)
GLES30.glLineWidth(30f)
GLES30.glDrawArrays(GLES30.GL_LINE_LOOP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    在这里插入图片描述

绘制三角形

三个点绘制一条线间隔绘制GLES30.GL_TRIANGLES

  • 绘制顺序:将传入的顶点作为单独的三角形绘制,ABCDEF绘制ABC,DEF两个三角形
// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)
GLES30.glDrawArrays(GLES30.GL_TRIANGLES, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    -

绘制正方形

三个点绘制一条线连续绘制GLES30.GL_TRIANGLE_STRIP

  • 绘制顺序:将传入的顶点作为三角条带绘制,ABCDEF绘制ABC,BCD,CDE,DEF四个三角形
// 1. 准备顶点数据
val vertex = floatArrayOf(
    -0.5f,  0.5f, 0.0f, // 左上
    -0.5f, -0.5f, 0.0f, // 左下
    0.5f, 0.5f, 0.0f, // 右上
    0.5f, -0.5f, 0.0f, // 右下
)
GLES30.glDrawArrays(GLES30.GL_TRIANGLE_STRIP, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    -

绘制圆

三个点绘制一条线连续绘制GLES30.GL_TRIANGLE_FAN

  • 绘制顺序:将传入的顶点作为扇面绘制,ABCDEF绘制ABC、ACD、ADE、AEF四个三角形
// 1. 准备顶点数据
val vertex = run {
    val radius = 0.5f
    val segments = 36 // 分段数(越多越圆滑)
    val angleStep = (2 * PI / segments).toFloat()

    val vertices = mutableListOf<Float>()
    // 中心点
    vertices.add(0f)
    vertices.add(0f)
    vertices.add(0f)

    // 圆周上的点
    for (i in 0..segments) {
        val angle = i * angleStep
        vertices.add(radius * cos(angle))
        vertices.add(radius * sin(angle))
        vertices.add(0f)
    }

    vertices.toFloatArray()
}
GLES30.glDrawArrays(GLES30.GL_TRIANGLE_FAN, NO_OFFSET, vertex.size / VERTEX_POS_DATA_SIZE)
  • 效果图
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306546.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

AndroidAOSP定制隐藏某个应用的图标

AndroidAOSP定制隐藏某个应用的图标 1.前言: 之前在做AOSP定制的时候需要隐藏某些App的图标&#xff0c;或者默认不显示某个定制的App图标&#xff0c;这样可以让用户感觉不到已经安装了某个App,或者在做系统定制的时候需要修改桌面icon,有些系统的App图标默认不需要显示&…

最小化重投影误差求解PnP

问题描述 已知n个空间点 P i [ x i , y i , z i ] T P_i[x_i,y_i,z_i]^T Pi​[xi​,yi​,zi​]T&#xff0c;其投影的像素坐标 p i [ u i , v i ] T p_i[u_i,v_i]^T pi​[ui​,vi​]T求相机的位姿R&#xff0c;T。 问题分析 根据相机模型&#xff0c;像素点和空间点的位置…

unity学习52:UI的最基础组件 rect transform,锚点anchor,支点/轴心点 pivot

目录 1 image 图像&#xff1a;最简单的UI 1.1 图像的基本属性 1.2 rect transform 1.3 image的component: 精灵 → 图片 1.4 修改颜色color 1.5 修改材质 1.6 raycast target 1.7 maskable 可遮罩 1.8 imageType 1.9 native size 原生大小 2 rect transform 2.1 …

【Python系列】PYTHONUNBUFFERED=1的作用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

Linux中的cgdb的基本使用

1.cgdb的简介 Linux中的cgdb是一个基于GDB&#xff08;GNU Debugger&#xff09;的图形化调试前端&#xff0c;它结合了GDB的命令行界面功能和代码查看窗口&#xff0c;为开发者提供了一个更为直观的调试体验。 cgdb的作用和功能&#xff1a; 直观调试体验&#xff1a;cgdb提供…

解决idea2019创建springboot项目爆红的问题

通过spring Initializr创建springboot项目时&#xff0c;由于idea版本太低&#xff0c;创建完成后需要手动修改pom.xml&#xff0c;对小白不太友好 一个简便的方法&#xff0c;配置好pom.xml文件的各个版本&#xff1a; 在 https://start.aliyun.com/ 上选择好后复制pom.xml代…

DeepSeek 提示词:基础结构

&#x1f9d1; 博主简介&#xff1a;CSDN博客专家&#xff0c;历代文学网&#xff08;PC端可以访问&#xff1a;https://literature.sinhy.com/#/?__c1000&#xff0c;移动端可微信小程序搜索“历代文学”&#xff09;总架构师&#xff0c;15年工作经验&#xff0c;精通Java编…

自动驾驶两个传感器之间的坐标系转换

有两种方式可以实现两个坐标系的转换。 车身坐标系下一个点p_car&#xff0c;需要转换到相机坐标系下&#xff0c;旋转矩阵R_car2Cam&#xff0c;平移矩阵T_car2Cam。点p_car在相机坐标系下记p_cam. 方法1&#xff1a;先旋转再平移 p_cam T_car2Cam * p_car T_car2Cam 需要注…

[实现Rpc] 客户端 | Requestor | RpcCaller的设计实现

目录 Requestor类的实现 框架 完善 onResponse处理回复 完整代码 RpcCaller类的实现 1. 同步调用 call 2. 异步调用 call 3. 回调调用 call Requestor类的实现 &#xff08;1&#xff09;主要功能&#xff1a; 客户端发送请求的功能&#xff0c;进行请求描述对服务器…

smolagents学习笔记系列(五)Tools-in-depth-guide

这篇文章锁定官网教程中的 Tools-in-depth-guide 章节&#xff0c;主要介绍了如何详细构造自己的Tools&#xff0c;在之前的博文 smolagents学习笔记系列&#xff08;二&#xff09;Agents - Guided tour 中我初步介绍了下如何将一个函数或一个类声明成 smolagents 的工具&…

axios几种请求类型的格式

Axios 是一个基于 Promise 的 HTTP 客户端&#xff0c;广泛用于浏览器和 Node.js 中发送 HTTP 请求。它支持多种请求格式&#xff0c;包括 GET、POST、PUT、DELETE 等。也叫RESTful 目录 一、axios几种请求类型的格式 1、get请求 2、post请求 3、put请求 4、delete请求 二…

架构设计系列(六):缓存

一、概述 在应用对外提供服务的时候其稳定性&#xff0c;性能会受到诸多因素的影响。缓存的作用是将频繁访问的数据缓存起来&#xff0c;避免资源重复消耗&#xff0c;提升系统服务的吞吐量。 二、缓存的应用场景 2.1 客户端 HTTP响应可以被浏览器缓存。我们第一次通过HTTP请…

个人电脑小参数GPT预训练、SFT、RLHF、蒸馏、CoT、Lora过程实践——MiniMind图文版教程

最近看到Github上开源了一个小模型的repo&#xff0c;是真正拉低LLM的学习门槛&#xff0c;让每个人都能从理解每一行代码&#xff0c; 从零开始亲手训练一个极小的语言模型。开源地址&#xff1a; GitHub - jingyaogong/minimind: &#x1f680;&#x1f680; 「大模型」2小时…

格式工厂 FormatFactory v5.18.便携版 ——多功能媒体文件转换工具

格式工厂 FormatFactory v5.18.便携版 ——多功能媒体文件转换工具 功能&#xff1a;视频 音频 图片 文档PDF格式 各种转换&#xff0c;同格式调整压缩比例&#xff0c;调整大小 特色&#xff1a;果风图标 好看; 支持多任务队列&#xff0c;完成自动关机 下载地址&#xff1…

KafkaTool

Offset Explorer 第一次打开需要配置kafka相关配置连接 随便先启动一个Kafka(先启动zookeeper) 设置key value 记得刷新

基于C++“简单且有效”的“数据库连接池”

前言 数据库连接池在开发中应该是很常用的一个组件&#xff0c;他可以很好的节省连接数据库的时间开销&#xff1b;本文基使用C实现了一个简单的数据库连接池&#xff0c;代码量只有400行只有&#xff0c;但是压力测试效果很好&#xff1b;欢迎收藏 关注&#xff0c;本人将会…

国产编辑器EverEdit - 洞察秋毫!文件比较功能!

1 文件比较 1.1 应用场景 项目开发过程中&#xff0c;可能不同的部分会由不同的人在负责&#xff0c;存在一个文件多人编辑的情况&#xff0c;用户需要寻找差异&#xff0c;并将文档进行合并&#xff0c;比较专业的文本比较工具为BeyondCompare&#xff0c;WinMerge等。   如…

QARepVGG--含demo实现

文章目录 前言引入Demo实现总结 前言 在上一篇博文RepVGG中&#xff0c;介绍了RepVGG网络。RepVGG 作为一种高效的重参数化网络&#xff0c;通过训练时的多分支结构&#xff08;3x3卷积、1x1卷积、恒等映射&#xff09;和推理时的单分支合并&#xff0c;在精度与速度间取得了优…

kotlin 知识点 七 泛型的高级特性

对泛型进行实化 泛型实化这个功能对于绝大多数Java 程序员来讲是非常陌生的&#xff0c;因为Java 中完全没有这个概 念。而如果我们想要深刻地理解泛型实化&#xff0c;就要先解释一下Java 的泛型擦除机制才行。 在JDK 1.5之前&#xff0c;Java 是没有泛型功能的&#xff0c;…

Transformer LLaMA

一、Transformer Transformer&#xff1a;一种基于自注意力机制的神经网络结构&#xff0c;通过并行计算和多层特征抽取&#xff0c;有效解决了长序列依赖问题&#xff0c;实现了在自然语言处理等领域的突破。 Transformer 架构摆脱了RNNs&#xff0c;完全依靠 Attention的优…