《Keras 3 : 使用迁移学习进行关键点检测》:此文为AI自动翻译

news2025/2/26 16:52:07

《Keras 3 :使用迁移学习进行关键点检测》

作者:Sayak Paul,由 Muhammad Anas Raza
转换为 Keras 3 创建日期:2021/05/02
最后修改时间:2023/07/19
描述:使用数据增强和迁移学习训练关键点检测器。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源

关键点检测包括定位关键对象部分。例如,关键部分 的脸包括鼻尖、眉毛、眼角等。这些部件有助于 以功能丰富的方式表示底层对象。关键点检测具有 包括姿势估计、人脸检测等的应用程序。

在此示例中,我们将使用 StanfordExtra 数据集 StanfordExtra 构建一个关键点检测器 使用迁移学习。此示例需要 TensorFlow 2.4 或更高版本, 以及 Imgaug 图书馆, 可以使用以下命令进行安装:

!pip install -q -U imgaug

数据采集

StanfordExtra 数据集包含 12,000 张狗图像以及关键点和 分割图。它是从 Stanford dogs 数据集开发的。 可以使用以下命令下载它:

!wget -q http://vision.stanford.edu/aditya86/ImageNetDogs/images.tar

注释在 StanfordExtra 数据集中以单个 JSON 文件的形式提供,并且需要 填写此表单以访问它。这 作者明确指示用户不要共享 JSON 文件,此示例尊重此愿望: 您应该自己获取 JSON 文件。

JSON 文件应在本地以 .stanfordextra_v12.zip

下载文件后,我们可以提取档案。

!tar xf images.tar
!unzip -qq ~/stanfordextra_v12.zip

进口

from keras import layers
import keras

from imgaug.augmentables.kps import KeypointsOnImage
from imgaug.augmentables.kps import Keypoint
import imgaug.augmenters as iaa

from PIL import Image
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
import json
import os

定义超参数

IMG_SIZE = 224
BATCH_SIZE = 64
EPOCHS = 5
NUM_KEYPOINTS = 24 * 2  # 24 pairs each having x and y coordinates

加载数据

作者还提供了一个元数据文件,该文件指定了有关 关键点,如颜色信息、动物姿势名称等。我们将此文件加载到 DataFrame 中,以提取用于可视化目的的信息。pandas

IMG_DIR = "Images"
JSON = "StanfordExtra_V12/StanfordExtra_v12.json"
KEYPOINT_DEF = (
    "https://github.com/benjiebob/StanfordExtra/raw/master/keypoint_definitions.csv"
)

# Load the ground-truth annotations.
with open(JSON) as infile:
    json_data = json.load(infile)

# Set up a dictionary, mapping all the ground-truth information
# with respect to the path of the image.
json_dict = {
       i["img_path"]: i for i in json_data}

的单个条目如下所示:json_dict

'n02085782-Japanese_spaniel/n02085782_2886.jpg':
{'img_bbox': [205, 20, 116, 201],
 'img_height': 272,
 'img_path': 'n02085782-Japanese_spaniel/n02085782_2886.jpg',
 'img_width': 350,
 'is_multiple_dogs': False,
 'joints': [[108.66666666666667, 252.0, 1],
            [147.66666666666666, 229.0, 1],
            [163.5, 208.5, 1],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [54.0, 244.0, 1],
            [77.33333333333333, 225.33333333333334, 1],
            [79.0, 196.5, 1],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [150.66666666666666, 86.66666666666667, 1],
            [88.66666666666667, 73.0, 1],
            [116.0, 106.33333333333333, 1],
            [109.0, 123.33333333333333, 1],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0]],
 'seg': ...}

在此示例中,我们感兴趣的键是:

  • img_path
  • joints

里面总共有 24 个条目。每个条目有 3 个值:joints

  • x 坐标
  • y 坐标
  • 关键点的可见性标志(1 表示可见性,0 表示不可见)

正如我们所看到的,包含多个条目,这些条目表示这些 关键点没有标记。在此示例中,我们将考虑 non-visible 和 未标记的关键点,以便进行小批量学习。joints[0, 0, 0]

# Load the metdata definition file and preview it.
keypoint_def = pd.read_csv(KEYPOINT_DEF)
keypoint_def.head()

# Extract the colours and labels.
colours = keypoint_def["Hex colour"].values.tolist()
colours = ["#" + colour for colour in colours]
labels = keypoint_def["Name"].values.tolist()


# Utility for reading an image and for getting its annotations.
def get_dog(name

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2306471.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Qt】桌面应用开发 ------ 绘图事件和绘图设备 文件操作

文章目录 9、绘图事件和绘图设备9.1 QPainter9.2 手动触发绘图事件9.3 绘图设备9.3.1 QPixmap9.3.2 QImage9.3.3 QImage与QPixmap的区别9.3.4 QPicture 10、文件操作10.1 文件读写10.2 二进制文件读写10.3 文本文件读写10.4 综合案例 9、绘图事件和绘图设备 什么时候画&#x…

python与C系列语言的差异总结(3)

与其他大部分编程语言不一样,Python使用空白符(whitespace)和缩进来标识代码块。也就是说,循环体、else条件从句之类的构成,都是由空白符加上冒号(:)来确定的。大部分编程语言都是使用某种大括号来标识代码块的。下面的…

OpenCV(9):视频处理

1 介绍 视频是由一系列连续的图像帧组成的,每一帧都是一幅静态图像。视频处理的核心就是对这些图像帧进行处理。常见的视频处理任务包括视频读取、视频播放、视频保存、视频帧处理等。 视频分析: 通过视频处理技术,可以分析视频中的运动、目标、事件等。…

【C++设计模式】观察者模式(1/2):从基础到优化实现

1. 引言 在 C++ 软件与设计系列课程中,观察者模式是一个重要的设计模式。本系列课程旨在深入探讨该模式的实现与优化。在之前的课程里,我们已对观察者模式有了初步认识,本次将在前两次课程的基础上,进一步深入研究,着重解决观察者生命周期问题,提升代码的安全性、灵活性…

在 CentOS 7.9上部署 Oracle 11.2.0.4.0 数据库

目录 在 CentOS 7.9上部署 Oracle 11.2.0.4.0 数据库引言安装常见问题vim粘贴问题 环境情况环境信息安装包下载 初始环境准备关闭 SELinux关闭 firewalld 安装前初始化工作配置主机名安装依赖优化内核参数限制 Oracle 用户的 Shell 权限配置 PAM 模块配置swap创建用户组与用户,…

计算机毕业设计SpringBoot+Vue.js足球青训俱乐部管理系统(源码+文档+PPT+讲解)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…

基于 DeepSeek LLM 本地知识库搭建开源方案(AnythingLLM、Cherry、Ragflow、Dify)认知

写在前面 博文内容涉及 基于 Deepseek LLM 的本地知识库搭建使用 ollama 部署 Deepseek-R1 LLM知识库能力通过 Ragflow、Dify 、AnythingLLM、Cherry 提供理解不足小伙伴帮忙指正 😃,生活加油 我站在人潮中央,思考这日日重复的生活。我突然想&#xff0c…

QSplashScreen --软件启动前的交互

目录 QSplashScreen 类介绍 使用方式 项目中使用 THPrinterSplashScreen头文件 THPrinterSplashScreen实现代码 使用代码 使用效果 QSplashScreen 类介绍 QSplashScreen 是 Qt 中的一个类,用于显示启动画面。它通常在应用程序启动时显示,以向用户显…

「软件设计模式」责任链模式(Chain of Responsibility)

深入解析责任链模式:用C打造灵活的请求处理链 引言:当审批流程遇上设计模式 在软件系统中,我们经常会遇到这样的场景:一个请求需要经过多个处理节点的判断,每个节点都有权决定是否处理或传递请求。就像企业的请假审批…

蓝桥杯嵌入式客观题以及解释

第十一届省赛(大学组) 1.稳压二极管时利用PN节的反向击穿特性制作而成 2.STM32嵌套向量终端控制器NVIC具有可编程的优先等级 16 个 3.一个功能简单但是需要频繁调用的函数,比较适用内联函数 4.模拟/数字转换器的分辨率可以通过输出二进制…

low rank decomposition如何用于矩阵的分解

1. 什么是矩阵分解和低秩分解 矩阵分解是将一个矩阵表示为若干结构更简单或具有特定性质的矩阵的组合或乘积的过程。低秩分解(Low Rank Decomposition)是其中一种方法,旨在将原矩阵近似为两个或多个秩较低的矩阵的乘积,从而降低复…

ubuntu离线安装Ollama并部署Llama3.1 70B INT4

文章目录 1.下载Ollama2. 下载安装Ollama的安装命令文件install.sh3.安装并验证Ollama4.下载所需要的大模型文件4.1 加载.GGUF文件(推荐、更容易)4.2 加载.Safetensors文件(不建议使用) 5.配置大模型文件 参考: 1、 如…

JNA基础使用,调用C++返回结构体

C端 test.h文件 #pragma oncestruct RespInfo {char* path;char* content;int statusCode; };extern "C" { DLL_EXPORT void readInfo(char* path, RespInfo* respInfo); }test.cpp文件 #include "test.h"void readInfo(char* path, RespInfo* respInfo…

解锁养生密码,拥抱健康生活

在快节奏的现代生活中,养生不再是一种选择,而是我们保持活力、提升生活质量的关键。它不是什么高深莫测的学问,而是一系列融入日常的简单习惯,每一个习惯都在为我们的健康加分。 早晨,当第一缕阳光洒进窗户&#xff0c…

OpenCV(6):图像边缘检测

图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明: 函数算法说明适用场景cv2.Canny()Canny 边缘检测多阶段算法,检测效果较…

spark的一些指令

一,复制和移动 1、复制文件 格式:cp 源文件 目标文件 示例:把file1.txt 复制一份得到file2.txt 。那么对应的命令就是:cp file1.txt file2.txt 2、复制目录 格式:cp -r 源文件 目标文件夹 示例:把目…

OpenHarmony全球化子系统

OpenHarmony全球化子系统 简介系统架构目录相关仓 简介 当OpenHarmony系统/应用在全球不同区域使用时,系统/应用需要满足不同市场用户关于语言、文化习俗的需求。全球化子系统提供支持多语言、多文化的能力,包括: 资源管理能力 根据设备类…

创建私人阿里云docker镜像仓库

步骤1、登录阿里云 阿里云创建私人镜像仓库地址:容器镜像服务 步骤2、创建个人实例 步骤:【实例列表】 》【创建个人实例】 》【设置Registry登录密码】 步骤3、创建命名空间 步骤:【个人实例】》【命名空间】》【创建命名空间】 注意&am…

【LLM】本地部署LLM大语言模型+可视化交互聊天,附常见本地部署硬件要求(以Ollama+OpenWebUI部署DeepSeekR1为例)

【LLM】本地部署LLM大语言模型可视化交互聊天,附常见本地部署硬件要求(以OllamaOpenWebUI部署DeepSeekR1为例) 文章目录 1、本地部署LLM(以Ollama为例)2、本地LLM交互界面(以OpenWebUI为例)3、本…

LLM之论文阅读——Context Size对RAG的影响

前言 RAG 系统已经在多个行业中得到广泛应用,尤其是在企业内部文档查询等场景中。尽管 RAG 系统的应用日益广泛,关于其最佳配置的研究却相对缺乏,特别是在上下文大小、基础 LLM 选择以及检索方法等方面。 论文原文: On the Influence of Co…