Lecture 1 - AI Systems (Overview)

news2025/2/25 6:18:17

一、Machine Learning Approach标准机器学习流程

• Train ML algorithm(训练机器学习算法):基于收集的数据训练机器学习模型。

二、Machine Learning for Adaptation(适应性机器学习)

加入了数据更新自动化的部分,表示模型能够自动适应新的数据并持续改进,是一个更加灵活的学习过程

三、Learn with Machine Learning(机器学习中的学习)

强调迭代持续学习,通过不断的反思和调整,来更好地理解问题并优化模型。

• Train ML algorithm(训练机器学习算法):机器学习需要用数据训练模型。

• Inspect the solution(检查解决方案):检查机器学习模型提供的解决方案,确保其准确性。

• Iterate if needed(如有需要可迭代):如果发现模型有缺陷或未达到预期,可以进行调整和重新训练。

• Understand the problem better(更好地理解问题):通过不断的训练与反馈,深入理解问题本质。

四、Label & Machine Learning

• Supervised Learning(监督学习):这种方法依赖于标签数据,通过已标记的训练数据来预测未知数据的标签。

• Semi-Supervised Learning(半监督学习):部分数据是带标签的,部分数据没有标签,通过半监督学习利用未标记数据提高模型的准确性。

• Unsupervised Learning(无监督学习):完全没有标签的数据,模型通过数据的内在结构来进行分组或分类

五、Machine Learning Tasks

• Classification(分类):将数据分配到不同的类别中。(垃圾邮件识别)

• Clustering(聚类):模型根据数据的相似性来分组。没有预先定义的类别(市场细分)

• Regression(回归):预测连续数值(房价预测、股票预测)

• Anomaly detection(异常检测):识别数据中的异常值或不符合预期的数据。

• Generation(生成):根据已有数据生成新数据。(图像生成、文本生成)

六、Challenges for AI System

• Insufficient data(数据不足):数据量不足可能会导致模型训练不充分。

• Nonrepresentative Training Data(非代表性训练数据):训练数据可能不能代表实际问题,导致模型效果不佳。

• Poor data quality(数据质量差)

• Irrelevant Features(无关特征):特征选择不当可能会引入噪声,影响模型表现。

• Overfitting(过拟合):模型过于复杂,导致在训练数据上表现很好,但在新数据上表现不佳。

• Underfitting(欠拟合):模型过于简单,无法捕捉到数据中的复杂模式。

• Data Mismatch (Data Domain)(数据不匹配):训练数据与实际数据领域不匹配,导致模型效果差。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2304741.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ansible 学习笔记

这里写自定义目录标题 基本架构文件结构安装查看版本 Ansible 配置相关文件主机清单写法 基本架构 Ansible 是基于Python实现的,默认使用22端口, 文件结构 安装 查看用什么语言写的用一下命令 查看版本 Ansible 配置相关文件 主机清单写法

springboot005学生心理咨询评估系统(源码+数据库+文档)

源码地址:学生心理咨询评估系统 文章目录 1.项目简介2.部分数据库结构与测试用例3.系统功能结构4.包含的文件列表(含论文)后台运行截图 1.项目简介 ​ 使用旧方法对学生心理咨询评估信息进行系统化管理已经不再让人们信赖了,把现…

Apache Doris:一款高性能的实时数据仓库

Apache Doris 是一款基于 MPP 架构的高性能、实时分析型数据库。它以高效、简单和统一的特性著称,能够在亚秒级的时间内返回海量数据的查询结果。Doris 既能支持高并发的点查询场景,也能支持高吞吐的复杂分析场景。 Apache Doris 最初是百度广告报表业务…

轻量级日志管理平台Grafana Loki

文章目录 轻量级日志管理平台Grafana Loki背景什么是Loki为什么使用 Grafana Loki?架构Log Storage Grafana部署使用基于 Docker Compose 安装 LokiMinIO K8s集群部署Loki采集Helm 部署方式和案例 参考 轻量级日志管理平台Grafana Loki 背景 在微服务以及云原生时…

《跟李沐学 AI》AlexNet论文逐段精读学习心得 | PyTorch 深度学习实战

前一篇文章,使用 AlexNet 实现图片分类 | PyTorch 深度学习实战 本系列文章 GitHub Repo: https://github.com/hailiang-wang/pytorch-get-started 本篇文章内容来自于学习 9年后重读深度学习奠基作之一:AlexNet【下】【论文精读】】的心得。 《跟李沐…

【电机控制器】FU6832S——持续更新

【电机控制器】FU6832S——持续更新 文章目录 [TOC](文章目录) 前言一、ADC二、UART三、PWM四、参考资料总结 前言 使用工具: 提示:以下是本篇文章正文内容,下面案例可供参考 一、ADC 二、UART 三、PWM 四、参考资料 总结 本文仅仅简…

计算机视觉算法实战——产品分拣(主页有源码)

✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ ​ 1. 领域简介✨✨ 产品分拣是工业自动化和物流领域的核心技术,旨在通过机器视觉系统对传送带上的物品进行快速识别、定位和分类&a…

基于模块联邦的微前端架构:重构大型前端应用的模块化边界

引言:企业级前端的模块化困境 字节跳动广告系统采用Webpack 5模块联邦后,主应用构建时间从14分钟降至38秒,微应用独立发布频率提升至每天50次。在动态加载机制下,首屏资源加载体积减少79%,跨团队组件复用率达到92%。其…

Android之图片保存相册及分享图片

文章目录 前言一、效果图二、实现步骤1.引入依赖库2.二维码生成3.布局转图片保存或者分享 总结 前言 其实现在很多分享都是我们自定义的,更多的是在界面加了很多东西,然后把整个界面转成图片保存相册和分享,而且现在分享都不需要第三方&…

Linux放行端口

8080这个端口测试看telnet是不通的,您服务器内是否有对应的业务监听了这个端口呢?您到服务器内执行下: netstat -nltp |grep 8080 同时服务器内执行下: systemctl status firewalld iptables -nL 截图反馈下,我看下防火…

Spring Boot延迟执行实现

说明&#xff1a;本文介绍如何在Spring Boot项目中&#xff0c;延迟执行某方法&#xff0c;及讨论延迟执行方法的是事务问题。 搭建Demo 首先&#xff0c;创建一个Spring Boot项目&#xff0c;pom.xml如下&#xff1a; <?xml version"1.0" encoding"UTF-…

npm i 失败权限问题

安装完node之后, 测试全局安装一个最常用的 express 模块进行测试 失败&#xff0c;但是用管理员权限打开cmd 安装就成功。 报错如下&#xff1a; npm ERR! If you believe this might be a permissions issue, please double-check the npm ERR! permissions of the file and …

uniapp 微信小程序打包之后vendor.js 主包体积太大,解决办法,“subPackages“:true设置不生效

现在是打包的时候&#xff0c;vendor.js 的内容全部打到了主包里面&#xff0c; 说一下我的方法&#xff1a; 1. 通过发行 小程序打包 这样打包的体积是最小的&#xff0c;打包之后打开微信开发工具&#xff0c;然后再上传 2.manifest.json,在“mp-weixin”里添加代码 "…

23.2、云计算安全机制与案例分析

目录 云计算安全保护机制与技术方案云计算安全保护机制与技术方案常见云计算网络安全机制云计算安全管理与运维云计算安全综合应用案例分析 - 阿里云云计算安全综合应用案例分析 - 腾讯云云计算安全综合应用案例分析 - 华为云 云计算安全保护机制与技术方案 首先针对云计算&am…

游戏引擎学习第120天

仓库:https://gitee.com/mrxiao_com/2d_game_3 上次回顾&#xff1a;周期计数代码 我们正在进行一个项目的代码优化工作&#xff0c;目标是提高性能。当前正在优化某个特定的代码片段&#xff0c;已经将其执行周期减少到48个周期。为了实现这一目标&#xff0c;我们设计了一个…

将DeepSeek接入vscode的N种方法

接入deepseek方法一:cline 步骤1:安装 Visual Studio Code 后,左侧导航栏上点击扩展。 步骤2:搜索 cline,找到插件后点击安装。 步骤3:在大模型下拉菜单中找到deep seek,然后下面的输入框输入你在deepseek申请的api key,就可以用了 让deepseek给我写了一首关于天气的…

AI智算-k8s+SGLang实战:DeepSeek-r1:671b满血版多机多卡私有化部署全攻略

k8sSGLang实战&#xff1a;DeepSeek-r1:671b满血版多机多卡私有化部署全攻略 前言环境准备1. 模型下载2.软硬件环境介绍 正式部署1. 部署LWS API2. 通过 LWS 部署DeepSeek-r1模型3. 查看显存占用情况4. 服务对外暴露5. 测试部署效果5.1 通过 curl5.2 通过 OpenWebUIa. 部署 Ope…

【蓝桥杯单片机】第十三届省赛第二场

一、真题 二、模块构建 1.编写初始化函数(init.c) void Cls_Peripheral(void); 关闭led led对应的锁存器由Y4C控制关闭蜂鸣器和继电器 2.编写LED函数&#xff08;led.c&#xff09; void Led_Disp(unsigned char ucLed); 将ucLed取反的值赋给P0 开启锁存器 关闭锁存…

从零开始玩转TensorFlow:小明的机器学习故事 5

图像识别的挑战 1 故事引入&#xff1a;小明的“图像识别”大赛 小明从学校里听说了一个有趣的比赛&#xff1a;“美食图像识别”。参赛者需要训练计算机&#xff0c;看一张食物照片&#xff08;例如披萨、苹果、汉堡等&#xff09;&#xff0c;就能猜出这是什么食物。听起来…

sql的索引与性能优化相关

之前面试的时候&#xff0c;由于在简历上提到优化sql代码&#xff0c;老是会被问到sql索引和性能优化问题&#xff0c;用这个帖子学习记录一下。 1.为什么要用索引 ------------------------------------------------------------------------------------------------------…