深度学习(5)-卷积神经网络

news2025/2/24 18:24:53

我们将深入理解卷积神经网络的原理,以及它为什么在计算机视觉任务上如此成功。我们先来看一个简单的卷积神经网络示例,它用干对 MNIST数字进行分类。这个任务在第2章用密集连接网络做过,当时的测试精度约为 97.8%。虽然这个卷积神经网络很简单,但其精度会超过第2章的密集连接模型。

代码 8-1给出了一个简单的卷积神经网络。它是 conv2D层和 MaxPooling2D 层的堆叠,你很快就会知道这些层的作用。我们将使用第7章介绍过的函数式 API来构建模型。

代码8-1 实例化一个小型卷积神经网络

from tensorflow import keras

from tensorflow.keras import layers

inputs = keras.Input(shape=(28, 28, 1))

x = layers.Conv2D(filters=32, kernel_size=3, activation="relu")(inputs)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=64, kernel_size=3, activation="relu")(x)

x = layers.MaxPooling2D(pool_size=2)(x)

x = layers.Conv2D(filters=128, kernel_size=3, activation="relu")(x)

x = layers.Flatten()(x)

outputs = layers.Dense(10, activation="softmax")(x)

model = keras.Model(inputs=inputs, outputs=outputs)

卷积神经网络接收的输入张量的形状为(image height,image width,image channels)(不包括批量维度)。本例中,我们设置卷积神经网络处理大小为(28,28,1)的输入,这正是 MNIST 图像的格式。

我们来看一下这个卷积神经网络的架构,如代码 8-2所示。

代码 8-2 显示模型的概述信息

model.summary()

在这里插入图片描述

可以看到,每个 conv2D层和 MaxPooling2D层的输出都是一个形状为(height,width,channels)的3阶张量。(张量的阶数相同,形状不同)宽度和高度这两个维度的尺寸通常会随着模型加深而减小。通道数对应传入Conv2D层的第一个参数(32、64或 128)。在最后一个 conv2D层之后,我们得到了形状为(3,3,128)的输出,即通道数为 128的3x3特征图。下一步是将这个输出传入密集连接分类器中,即 Dense 层的堆叠,你已经很熟悉了。这些分类器可以处理1阶的向量,而当前输出是3阶张量。为了让二者匹配,我们先用 Flatten 层将三维输出展平为一维,然后再添加 Dense 层。最后,我们进行十类别分类,所以最后一层使用带有 10个输出的 softmax 激活函数。下面我们在 MNIST数字上训练这个卷积神经网络。我们将重复使用的MNIST 示例中的很多代码。

由于我们要做的是带有 softmax 输出的十类别分类,因此要使用分类交叉熵损失,而且由于标签是整数,因此要使用稀疏分类交叉熵损失sparse categorical crossentropy,如代码 8-3 所示。注意此处代码执行需要网络才能执行。

from tensorflow.keras.datasets import mnist

(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))

train_images = train_images.astype("float32") / 255

test_images = test_images.reshape((10000, 28, 28, 1))

test_images = test_images.astype("float32") / 255

model.compile(optimizer="rmsprop",

              loss="sparse_categorical_crossentropy",

              metrics=["accuracy"])

model.fit(train_images, train_labels, epochs=5, batch_size=64)

我们在测试数据上评估模型,如代码 8-4所示。

代码 8-4 评估卷积神经网络

密集连接模型的测试精度约为 97.8%,而这个简单的卷积神经网络的测试精度达到99.1%,错误率降低了约 60%(相对比例)。这相当不错!

但是,与密集连接模型相比,这个简单卷积神经网络的效果为什么这么好?要回答这个问题,我们来深入了解 Conv2D 层和 MaxPooling2D层的作用。

总结:在一定条件下,卷积神经网络在图像识别上精度优于密集链接模型。每个 conv2D层和 MaxPooling2D层的输出都是一个形状为(height,width,channels)的3阶张量。宽度和高度这两个维度的尺寸通常会随着模型加深而减小。而通道数会模型加深而增加。我的理解就是通过悬系,模型对于特征的理解越来越丰富。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2304523.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【HarmonyOS Next】拒绝权限二次申请授权处理

【HarmonyOS Next】拒绝权限二次申请授权处理 一、问题背景: 在鸿蒙系统中,对于用户权限的申请,会有三种用户选择方式: 1.单次使用允许 2.使用应用期间(长时)允许 3.不允许 当用户选择不允许后&#xff0…

跟着李沐老师学习深度学习(十四)

注意力机制(Attention) 引入 心理学角度 动物需要在复杂环境下有效关注值得注意的点心理学框架:人类根据随意线索和不随意线索选择注意力 注意力机制 之前所涉及到的卷积、全连接、池化层都只考虑不随意线索而注意力机制则显示的考虑随意…

基于YOLO11深度学习的半导体芯片缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…

Spring Boot3.x集成Flowable7.x(一)Spring Boot集成与设计、部署、发起、完成简单流程

一、Flowable简介 Flowable 是一个轻量级、开源的业务流程管理(BPM)和工作流引擎,旨在帮助开发者和企业实现业务流程的自动化。它支持 BPMN 2.0 标准,适用于各种规模的企业和项目。Flowable 的核心功能包括流程定义、流程执行、任…

网络安全-openssl工具

OpenSSl是一个开源项目,包括密码库和SSL/TLS工具集。它已是在安全领域的事实标准,并且拥有比较长的历史,现在几乎所有的服务器软件和很多客户端都在使用openssl,其中基于命令行的工具是进行加密、证书管理以及测试最常用到的软件。…

【Web开发】PythonAnyWhere免费部署Django项目

PythonAnyWhere免费部署Django项目 文章目录 PythonAnyWhere免费部署Django项目将项目上传到GitHub从GitHub下载Django项目创建Web应用配置静态文件将项目上传到GitHub 打开项目,输入以下命令,生成Django项目依赖包。pip list --format=freeze > requirements.txt打开Git …

视频的分片上传

分片上传需求分析: 项目中很多地方需要上传视频,如果视频很大,上传到服务器需要很多时间 ,这个时候体验就会很差。所以需要前端实现分片上传的功能。 要实现分片上传,需要对视频进行分割,分割成不同的大小…

Moonshot AI 新突破:MoBA 为大语言模型长文本处理提效论文速读

前言 在自然语言处理领域,随着大语言模型(LLMs)不断拓展其阅读、理解和生成文本的能力,如何高效处理长文本成为一项关键挑战。近日,Moonshot AI Research 联合清华大学、浙江大学的研究人员提出了一种创新方法 —— 混…

Deepseek首页实现 HTML

人工智能与未来:机遇与挑战 引言 在过去的几十年里,人工智能(AI)技术取得了突飞猛进的发展。从语音助手到自动驾驶汽车,AI 正在深刻地改变我们的生活方式、工作方式以及社会结构。然而,随着 AI 技术的普及…

VS2022配置FFMPEG库基础教程

1 简介 1.1 起源与发展历程 FFmpeg诞生于2000年,由法国工程师Fabrice Bellard主导开发,其名称源自"Fast Forward MPEG",初期定位为多媒体编解码工具。2004年后由Michael Niedermayer接任维护,逐步发展成为包含音视频采…

kafka基本知识

什么是 Kafka? Apache Kafka 是一个开源的分布式流处理平台,最初由 LinkedIn 开发,后来成为 Apache 软件基金会的一部分。Kafka 主要用于构建实时数据管道和流处理应用程序。它能够高效地处理大量的数据流,广泛应用于日志收集、数…

类型系统下的语言分类与类型系统基础

类型系统是一种根据计算值的种类对程序语法进行分类的方式,目的是自动检查是否有可能导致错误的行为。 —Benjamin.C.Pierce,《类型与编程语言》(2002) 每当谈到编程语言时,人们常常会提到“静态类型”和“动态类型”。…

有没有使用wxpython开发的类似于visio或drawio的开源项目(AI生成)

有没有使用wxpython开发的类似于visio或drawio的开源项目 是的,有一些使用wxPython开发的类似于Microsoft Visio或draw.io(现为diagrams.net)的开源项目。wxPython 是一个跨平台的GUI工具包,它允许Python开发者创建桌面应用程序&…

【MySQL 一 数据库基础】深入解析 MySQL 的索引(3)

索引 索引操作 自动创建 当我们为一张表加主键约束(Primary key),外键约束(Foreign Key),唯一约束(Unique)时,MySQL会为对应的的列自动创建一个索引;如果表不指定任何约束时,MySQL会自动为每一列生成一个索引并用ROW_I…

【C++】优先级队列宝藏岛

> 🍃 本系列为初阶C的内容,如果感兴趣,欢迎订阅🚩 > 🎊个人主页:[小编的个人主页])小编的个人主页 > 🎀 🎉欢迎大家点赞👍收藏⭐文章 > ✌️ 🤞 &#x1…

List 接口中的 sort 和 forEach 方法

List 接口中的 sort 和 forEach 方法是 Java 8 引入的两个非常实用的函数,分别用于 排序 和 遍历 列表中的元素。以下是它们的详细介绍和用法: sort 函数 功能 对列表中的元素进行排序。 默认使用自然顺序(如数字从小到大,字符…

MusicGPT的本地化部署与远程调用:让你的Windows电脑成为AI音乐工作站

文章目录 前言1. 本地部署2. 使用方法介绍3. 内网穿透工具下载安装4. 配置公网地址5. 配置固定公网地址 前言 在如今快节奏的生活里,音乐不仅能够抚慰我们的心灵,还能激发无限创意。想象一下,在忙碌的工作间隙或闲暇时光中,只需输…

Unity通过Vosk实现离线语音识别方法

标注:deepseek直接生成,待验证 在Unity中实现离线语音识别可以通过集成第三方语音识别库来实现。以下是一个使用 Unity 和 Vosk(一个开源的离线语音识别库)的简单示例。 准备工作 Vosk:一个开源的离线语音识别库&am…

智能优化算法:莲花算法(Lotus flower algorithm,LFA)介绍,提供MATLAB代码

一、 莲花算法 1.1 算法原理 莲花算法(Lotus flower algorithm,LFA)是一种受自然启发的优化算法,其灵感来源于莲花的自清洁特性和授粉过程。莲花的自清洁特性,即所谓的“莲花效应”,是由其叶片表面的微纳…

企业数据集成:实现高效调拨出库自动化

调拨出库对接调出单-v:旺店通企业奇门数据集成到用友BIP 在企业信息化管理中,数据的高效流转和准确对接是实现业务流程自动化的关键。本文将分享一个实际案例,展示如何通过轻易云数据集成平台,将旺店通企业奇门的数据无缝集成到用…