分布式数据库解析

news2025/2/23 8:41:07

title: 分布式数据库解析
date: 2025/2/20
updated: 2025/2/20
author: cmdragon

excerpt:
通过金融交易、社交平台、物联网等9大真实场景,结合Google Spanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟同步机制等关键技术,提供跨云多活架构设计、千万级TPS流量调度、数据一致性验证工具链等完整解决方案。

categories:

  • 前端开发

tags:

  • CAP定理
  • 分布式事务
  • 全球一致性
  • 共识算法
  • 云数据库
  • 高可用架构
  • 数据分片

image
image

扫描二维码关注或者微信搜一搜:编程智域 前端至全栈交流与成长

通过金融交易、社交平台、物联网等9大真实场景,结合Google Spanner跨洲事务、DynamoDB毫秒级扩展等38个生产级案例,揭示分布式数据库的核心原理与工程实践。内容涵盖CAP定理的动态权衡策略、Paxos/Raft协议的工程实现差异、TrueTime时钟同步机制等关键技术,提供跨云多活架构设计、千万级TPS流量调度、数据一致性验证工具链等完整解决方案。

一、CAP定理的动态平衡艺术

1. 金融交易系统CP模型实现
// 使用Raft协议实现强一致性(以etcd为例)
public class RaftBankService {
   
  private final RaftClient client;
  
  public CompletableFuture<Boolean> transfer(String from, String to, BigDecimal amount) {
   
    ByteString command = TransferCommand.newBuilder()
        .setFromAccount(from)
        .setToAccount(to)
        .setAmount(amount.toString())
        .build().toByteString();
        
    return client.send(command)
        .thenApply(response -> {
   
          TransferResponse res = TransferResponse.parseFrom(response);
          return res.getSuccess();
        });
  }
}

// 节点故障时的处理逻辑
raftNode.addStateListener((newState) -> {
   
  if (newState == State.LEADER) {
   
    recoveryPendingTransactions();
  }
});

设计权衡

  • 在3AZ部署中保持CP特性,故障切换时间<1.5秒
  • 牺牲部分写入可用性(AP),保证资金交易零差错
2. 社交网络AP模型实践
# DynamoDB最终一致性读优化
def get_user_feed(user_id):
    # 优先读取本地副本
    response = table.query(
        KeyConditionExpression=Key('user_id').eq(user_id),
        ConsistentRead=False
    )
    
    # 异步校验数据版本
    Thread(target=check_feed_consistency, args=(user_id, response['version']))
    
    return response['items']

def check_feed_consistency(user_id, client_version):
    # 向3个节点获取最新版本号
    versions = []
    for node in ['node1', 'node2', 'node3']:
        version = dynamo_client.get({
   
            'TableName': 'user_fee

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2303835.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Zotero 快速参考文献导出(特定期刊引用)

目录 一、添加样式 每次投期刊时每种期刊的引用方式不一样&#xff0c;就很麻烦。发现zeotero添加期刊模板再导入很方便 一、添加样式 然后就能导出自己想要的期刊格式的引用了

库的制作与原理(一)

1.库的概念 库是写好的&#xff0c;现成的可以复用的代码。本质上库是一种可执行的二进制形式&#xff0c;可以被操作系统载入内存执行。库有俩种&#xff1a;静态库 .a[Linux] .lib[windows] 动态库 .so[Linux] .dll[windows] 就是把.c文件变成.o文件&#xff0c;把…

go 日志框架

内置log import ("log""os" )func main() {// 设置loglog.SetFlags(log.Llongfile | log.Lmicroseconds | log.Ldate)// 自定义日志前缀log.SetPrefix("[pprof]")log.Println("main ..")// 如果用format就用PrintF&#xff0c;而不是…

Rust配置笔记

1.Node.js下载配置 2.c环境配置 C我是用vs装的点击这个installer 点击修改 选择C环境就行,这个时候它就帮忙配置环境了 3.Rust下载配置 4.装napi-rs框架 npm install -g napi-rs/cliRust下载网站 下完之后直接打开 一开始下包会比较慢,多等等 下好之后跑项目前第一件事配置…

具有整合各亚专科医学领域知识能力的AI智能体开发纲要(2025版)

整合各亚专科医学领域知识能力的AI代理的开发与研究 一、引言 1.1 研究背景 在科技飞速发展的当下,人工智能(AI)已成为推动各行业变革的关键力量,医疗领域也不例外。近年来,AI 在医疗行业的应用取得了显著进展,从医学影像诊断到疾病预测,从药物研发到个性化医疗,AI 技…

数据表的存储过程和函数介绍

文章目录 一、概述二、创建存储过程三、在创建过程中使用变量四、光标的使用五、流程控制的使用六、查看和删除存储过程 一、概述 存储过程和函数是在数据库中定义的一些SQL语句的集合&#xff0c;然后直接调用这些存储过程和函数来执行已经定义好的SQL语句。存储过程和函数可…

为AI聊天工具添加一个知识系统 之117 详细设计之58 思维导图及观察者效应 之2 概念全景图

&#xff08;说明&#xff1a;本文和上一篇问题基本相同&#xff0c;但换了一个模型 deepseek-r1&#xff09; Q1227、在提出项目“为使用AI聊天工具的聊天者加挂一个专属的知识系统”后&#xff0c;我们已经进行了了大量的讨论-持续了近三个月了。这些讨论整体淋漓尽致体现了…

Error [ERR_REQUIRE_ESM]: require() of ES Module

报错信息&#xff1a; 【报错】Message.js 导入方式不对&#xff0c;用的是 ES Moudle 的语法&#xff0c;提示使用 import 引入文件 项目开发没有用到 js-message 依赖&#xff0c;是 node-ipc 依赖中用到的 js-message 依赖&#xff0c; node-ipc 中限制 js-message 版本&a…

GStreamer源码安装1.24版本

从官网下载 1.24的源码包 https://gitlab.freedesktop.org/gstreamer/gstreamer/-/tree/1.24?ref_typeheads#getting-started &#xff0c;尝试过使用git clone 的方式&#xff0c;但速度贼慢&#xff0c;就选择了下载源码包的方式安装依赖 sudo apt install libssl-dev g me…

从CNN到Transformer:遥感影像目标检测的未来趋势

文章目录 前言专题一、深度卷积网络知识专题二、PyTorch应用与实践&#xff08;遥感图像场景分类&#xff09;专题三、卷积神经网络实践与遥感影像目标检测专题四、卷积神经网络的遥感影像目标检测任务案例【FasterRCNN】专题五、Transformer与遥感影像目标检测专题六、Transfo…

从 x86 到 ARM64:CPU 架构的进化与未来

在计算机发展的历史长河中&#xff0c;x86、x64 和 ARM64 这三大主流 CPU 架构各自书写了辉煌的篇章。它们不仅代表了技术的进步&#xff0c;更承载着无数创新者的梦想与努力。 x86&#xff1a;从 16 位到 32 位的辉煌之路 诞生与崛起 1978 年&#xff0c;英特尔&#xff08;…

Java数据结构第十二期:走进二叉树的奇妙世界(一)

专栏&#xff1a;数据结构(Java版) 个人主页&#xff1a;手握风云 目录 一、树型结构 1.1. 树的定义 1.2. 树的基本概念 1.3. 树的表示形式 二、二叉树 2.1. 概念 2.2. 两种特殊的二叉树 2.3. 二叉树的性质 2.4. 二叉树的存储 三、二叉树的基本操作 一、树型结构 1.…

【AI时代】基于AnythingLLM+ Ollama + DeepSeek 搭建本地知识库

一、本地安装Ollama及DeepSeek 参考教程&#xff1a; https://blog.csdn.net/Bjxhub/article/details/145536134 二、下载并安装AnythingLLM AnythingLLM下载地址&#xff1a; https://anythingllm.com/ 傻瓜式安装即可 可以自定义安装路径。三、配置AnythingLLM并使用 3.…

leetcode刷题记录(一百一十五)——64. 最小路径和

&#xff08;一&#xff09;问题描述 64. 最小路径和 - 力扣&#xff08;LeetCode&#xff09;64. 最小路径和 - 给定一个包含非负整数的 m x n 网格 grid &#xff0c;请找出一条从左上角到右下角的路径&#xff0c;使得路径上的数字总和为最小。说明&#xff1a;每次只能向下…

UE5 编辑器辅助/加强 插件搜集

1. Actor Locker 地址&#xff1a;https://www.fab.com/listings/ec26ac5e-4720-467c-a3a6-b5103b6b74d0 使用说明&#xff1a;https://github.com/Gradess2019/ActorLocker 支持&#xff1a;5.0 – 5.5 简单的编辑器扩展。它允许你通过世界轮廓窗口/热键/上下文菜单在编辑器视…

怎么在Github上readme文件里面怎么插入图片?

环境&#xff1a; Github 问题描述&#xff1a; 怎么在Github上readme文件里面怎么插入图片&#xff1f; https://github.com/latiaoge/AI-Sphere-Butler/tree/master 解决方案&#xff1a; 1.相对路径引用 上传图片到仓库 将图片文件&#xff08;如 .png/.jpg&#xff…

什么是矩阵账号?如何高效运营tiktok矩阵账号

‍‌​​‌‌​‌​‍‌​​​‌‌​​‍‌​​​‌​‌​‍‌​​‌​​‌​‍‌​‌‌​‌‌‌‍‌​‌​‌​​​‍‌​​‌​‌‌​‍‌​​​​‌‌​‍‌​‌​​‌‌‌‍‌​​‌‌​‌​‍‌​‌​​‌‌‌‍‌​‌‌‌​​‌‍‌‌​​‌‌‌​‍‌‌​​‌‌​​‍‌…

SpringSecurity初始化的本质

一、对SpringSecurity初始化的几个疑问 通过前面第一次请求访问的分析我们明白了一个请求就来后的具体处理流程 对于一个请求到来后会通过FilterChainProxy来匹配一个对应的过滤器链来处理该请求。那么这里我们就有几个疑惑。 FilterChainProxy什么时候创建的?过滤器链和对应的…

自注意力机制和CNN的区别

CNN&#xff1a;一种只能在固定感受野范围内进行关注的自注意力机制。​CNN是自注意力的简化版本。自注意力&#xff1a;具有可学习感受野的CNN。自注意力是CNN的复杂形态&#xff0c;是更灵活的CNN&#xff0c;经过某些设计就可以变为CNN。 越灵活、越大的模型&#xff0c;需要…

本地部署DeepSeek-R1模型教程

文章目录 第一步&#xff1a;安装运行框架 哈喽各位小伙伴们&#xff0c;最近deepseek非常的火&#xff0c;不过因为全球访问量剧增经常会导致deepseek的服务器繁忙&#xff0c;如果想要稳定使用就得靠本地部署了&#xff0c;不仅可以稳定使用还能保护数据隐私&#xff0c;今天…