跟着 Lua 5.1 官方参考文档学习 Lua (3)

news2025/2/22 3:10:41

文章目录

    • 2.5 – Expressions
      • 2.5.1 – Arithmetic Operators
      • 2.5.2 – Relational Operators
      • 2.5.3 – Logical Operators
      • 2.5.4 – Concatenation
      • 2.5.5 – The Length Operator
      • 2.5.6 – Precedence
      • 2.5.7 – Table Constructors
      • 2.5.8 – Function Calls
      • 2.5.9 – Function Definitions
    • 2.6 – Visibility Rules

2.5 – Expressions

The basic expressions in Lua are the following:

	exp ::= prefixexp
	exp ::= nil | false | true
	exp ::= Number
	exp ::= String
	exp ::= function
	exp ::= tableconstructor
	exp ::= `...´
	exp ::= exp binop exp
	exp ::= unop exp
	prefixexp ::= var | functioncall | `(´ exp `)´

Numbers and literal strings are explained in §2.1;

variables are explained in §2.3;

function definitions are explained in §2.5.9;

function calls are explained in §2.5.8;

table constructors are explained in §2.5.7.

Vararg expressions, denoted by three dots (‘...’), can only be used when directly inside a vararg function; they are explained in §2.5.9.

Binary operators comprise arithmetic operators (see §2.5.1), relational operators (see §2.5.2), logical operators (see §2.5.3), and the concatenation operator (see §2.5.4).

Unary operators comprise the unary minus (see §2.5.1), the unary not (see §2.5.3), and the unary length operator (see §2.5.5).

Both function calls and vararg expressions can result in multiple values. If an expression is used as a statement (only possible for function calls (see §2.4.6)), then its return list is adjusted to zero elements, thus discarding all returned values. If an expression is used as the last (or the only) element of a list of expressions, then no adjustment is made (unless the call is enclosed in parentheses). In all other contexts, Lua adjusts the result list to one element, discarding all values except the first one.

Here are some examples:

     f()                -- adjusted to 0 results
     g(f(), x)          -- f() is adjusted to 1 result
     g(x, f())          -- g gets x plus all results from f()
     a,b,c = f(), x     -- f() is adjusted to 1 result (c gets nil)
     a,b = ...          -- a gets the first vararg parameter, b gets
                        -- the second (both a and b can get nil if there
                        -- is no corresponding vararg parameter)
     
     a,b,c = x, f()     -- f() is adjusted to 2 results
     a,b,c = f()        -- f() is adjusted to 3 results
     return f()         -- returns all results from f()
     return ...         -- returns all received vararg parameters
     return x,y,f()     -- returns x, y, and all results from f()
     {f()}              -- creates a list with all results from f()
     {...}              -- creates a list with all vararg parameters
     {f(), nil}         -- f() is adjusted to 1 result

Any expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is always a single value, even if f returns several values. (The value of (f(x,y,z)) is the first value returned by f or nil if f does not return any values.)

2.5.1 – Arithmetic Operators

Lua supports the usual arithmetic operators: the binary + (addition), - (subtraction), * (multiplication), / (division), % (modulo), and ^ (exponentiation); and unary - (negation). If the operands are numbers, or strings that can be converted to numbers (see §2.2.1), then all operations have the usual meaning. Exponentiation works for any exponent. For instance, x^(-0.5) computes the inverse of the square root of x. Modulo is defined as

     a % b == a - math.floor(a/b)*b

That is, it is the remainder of a division that rounds the quotient towards minus infinity.

2.5.2 – Relational Operators

The relational operators in Lua are

     ==    ~=    <     >     <=    >=

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is false. Otherwise, the values of the operands are compared.

Numbers and strings are compared in the usual way.

Objects (tables, userdata, threads, and functions) are compared by reference: two objects are considered equal only if they are the same object. Every time you create a new object (a table, userdata, thread, or function), this new object is different from any previously existing object.

You can change the way that Lua compares tables and userdata by using the “eq” metamethod (see §2.8).

The conversion rules of §2.2.1 do not apply to equality comparisons. Thus, "0"==0 evaluates to false, and t[0] and t["0"] denote different entries in a table.

The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared as such. Otherwise, if both arguments are strings, then their values are compared according to the current locale. Otherwise, Lua tries to call the “lt” or the “le” metamethod (see §2.8). A comparison a > b is translated to b < a and a >= b is translated to b <= a.

2.5.3 – Logical Operators

The logical operators in Lua are and, or, and not. Like the control structures (see §2.4.4), all logical operators consider both false and nil as false and anything else as true.

The negation operator not always returns false or true.

The conjunction operator and returns its first argument if this value is false or nil; otherwise, and returns its second argument. 【0&0=0, 0&1=0】

The disjunction operator or returns its first argument if this value is different from nil and false; otherwise, or returns its second argument. 【1|0=1, 1|1=1, 0|0=0, 0|1=1】

Both and and or use short-cut evaluation; that is, the second operand is evaluated only if necessary. Here are some examples:

     10 or 20            --> 10
     10 or error()       --> 10
     nil or "a"          --> "a"
     nil and 10          --> nil
     false and error()   --> false
     false and nil       --> false
     false or nil        --> nil
     10 and 20           --> 20

(In this manual, --> indicates the result of the preceding expression.)

2.5.4 – Concatenation

The string concatenation operator in Lua is denoted by two dots (‘..’). If both operands are strings or numbers, then they are converted to strings according to the rules mentioned in §2.2.1. Otherwise, the “concat” metamethod is called (see §2.8).

2.5.5 – The Length Operator

The length operator is denoted by the unary operator #. The length of a string is its number of bytes (that is, the usual meaning of string length when each character is one byte).

The length of a table t is defined to be any integer index n such that t[n] is not nil and t[n+1] is nil; moreover, if t[1] is nil, n can be zero.

For a regular array, with non-nil values from 1 to a given n, its length is exactly that n, the index of its last value. If the array has “holes” (that is, nil values between other non-nil values), then #t can be any of the indices that directly precedes a nil value (that is, it may consider any such nil value as the end of the array).

补充:If you really need to handle arrays with holes up to their last index, you can use the function table.maxn, which returns the largest numerical positive index of a table.

The length operator provides several common Lua idioms:

print(a[#a]) -- prints the last value of list ’a’
a[#a] = nil -- removes this last value
a[#a+1] = v -- appends ’v’ to the end of the list  

例子:从标准输入读取10行数据

a = {}
for i=1,10 do
    a[#a+1] = io.read()
end

例子:

t = {}
t[10000] = 1
print(#t) -- 长度为0,因为t[1]为nil

t = {}
t[1] = 1
t[2] = 1
t[3] = 1

t[10000] = 1
print(#t) -- 长度为3

print(table.maxn(t)) -- 输出 10000

2.5.6 – Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

     or
     and
     <     >     <=    >=    ~=    ==
     ..
     +     -
     *     /     %
     not   #     - (unary)
     ^

As usual, you can use parentheses to change the precedences of an expression. The concatenation (‘..’) and exponentiation (‘^’) operators are right associative. All other binary operators are left associative.

例子:^ 和 … 的右结合性

print(2^2^3) -- 2^(2^3) 而不是(2^2)^3

print("a" .. "b" .. "c") -- "a" .. ("b" .. "c") 而不是 ("a" .. "b") .. "c"

补充:

Therefore, the following expressions on the left are equivalent to those on the right:

a+i < b/2+1 <--> (a+i) < ((b/2)+1)
5+x^2*8 <--> 5+((x^2)*8)
a < y and y <= z <--> (a < y) and (y <= z)
-x^2 <--> -(x^2)
x^y^z <--> x^(y^z)

When in doubt, always use explicit parentheses.

2.5.7 – Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is created. A constructor can be used to create an empty table or to create a table and initialize some of its fields. The general syntax for constructors is

	tableconstructor ::= `{´ [fieldlist] `}´
	fieldlist ::= field {fieldsep field} [fieldsep]
	field ::= `[´ exp `]´ `=´ exp | Name `=´ exp | exp
	fieldsep ::= `,´ | `;´

Each field of the form [exp1] = exp2 adds to the new table an entry with key exp1 and value exp2. A field of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form exp are equivalent to [i] = exp, where i are consecutive numerical integers, starting with 1. Fields in the other formats do not affect this counting.

For example,

     a = { [f(1)] = g; "x", "y"; x = 1, f(x), [30] = 23; 45 }

is equivalent to

     do
       local t = {}
       t[f(1)] = g
       t[1] = "x"         -- 1st exp
       t[2] = "y"         -- 2nd exp
       t.x = 1            -- t["x"] = 1
       t[3] = f(x)        -- 3rd exp
       t[30] = 23
       t[4] = 45          -- 4th exp
       a = t
     end

If the last field in the list has the form exp and the expression is a function call or a vararg expression, then all values returned by this expression enter the list consecutively (see §2.5.8). To avoid this, enclose the function call or the vararg expression in parentheses (see §2.5).

The field list can have an optional trailing separator, as a convenience for machine-generated code.

2.5.8 – Function Calls

A function call in Lua has the following syntax:

	functioncall ::= prefixexp args
	prefixexp ::= var | functioncall | `(´ exp `)´

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then this function is called with the given arguments. Otherwise, the prefixexp “call” metamethod is called, having as first parameter the value of prefixexp, followed by the original call arguments (see §2.8).

The form

	functioncall ::= prefixexp `:´ Name args

can be used to call “methods”. A call v:name(args) is syntactic sugar for v.name(v,args), except that v is evaluated only once.

Arguments have the following syntax:

	args ::= `(´ [explist] `)´
	args ::= tableconstructor
	args ::= String

All argument expressions are evaluated before the call.

A call of the form f{fields} is syntactic sugar for f({fields}); that is, the argument list is a single new table.

A call of the form f'string' (or f"string" or f[[string]]) is syntactic sugar for f('string'); that is, the argument list is a single literal string.

例子:函数参数语法的三种形式

function foo(a)
    print(a)
end

foo(1)   -- 1

foo"abc" -- abc

foo{1,2,3} -- table: ...

As an exception to the free-format syntax of Lua, you cannot put a line break before the ‘(’ in a function call. This restriction avoids some ambiguities in the language. If you write

     a = f
     (g).x(a)

Lua would see that as a single statement, a = f(g).x(a). So, if you want two statements, you must add a semi-colon between them. If you actually want to call f, you must remove the line break before (g).

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or proper tail recursion): in a tail call, the called function reuses the stack entry of the calling function. Therefore, there is no limit on the number of nested tail calls that a program can execute. However, a tail call erases any debug information about the calling function.

Note that a tail call only happens with a particular syntax, where the return has one single function call as argument; this syntax makes the calling function return exactly the returns of the called function. So, none of the following examples are tail calls:

     return (f(x))        -- results adjusted to 1
     return 2 * f(x)
     return x, f(x)       -- additional results
     f(x); return         -- results discarded
     return x or f(x)     -- results adjusted to 1

2.5.9 – Function Definitions

The syntax for function definition is

	function ::= function funcbody
	funcbody ::= `(´ [parlist] `)´ block end

The following syntactic sugar simplifies function definitions:

	stat ::= function funcname funcbody
	stat ::= local function Name funcbody
	funcname ::= Name {`.´ Name} [`:´ Name]

The statement

     function f () body end

translates to

     f = function () body end

The statement

     function t.a.b.c.f () body end

translates to

     t.a.b.c.f = function () body end

The statement

     local function f () body end

translates to

     local f; f = function () body end

not to

     local f = function () body end

(This only makes a difference when the body of the function contains references to f.)

补充:So, we can use this syntax for recursive functions without worrying:

local function fact (n)
	if n == 0 then return 1
	else return n*fact(n-1)
	end
end  

A function definition is an executable expression, whose value has type function.

When Lua pre-compiles a chunk, all its function bodies are pre-compiled too. Then, whenever Lua executes the function definition, the function is instantiated (or closed). This function instance (or closure) is the final value of the expression. Different instances of the same function can refer to different external local variables and can have different environment tables.


补充:When a function is written enclosed in another function, it has full access to local variables from the enclosing function; this feature is called lexical scoping.

例子:闭包

names = {"Peter", "Paul", "Mary"}
grades = {Mary = 10, Paul = 7, Peter = 8}

function sortbygrade (names, grades)
    table.sort(names, function (n1, n2)
        return grades[n1] > grades[n2] -- compare the grades
    end)
end

sortbygrade(names, grades)

for _, v in ipairs(names) do
    print(v)
end

The interesting point in the example is that the anonymous function given to sort accesses the parameter grades, which is local to the enclosing function sortbygrade. Inside this anonymous function, grades is neither a global variable nor a local variable, but what we call a non-local variable. (For historical reasons, non-local variables are also called upvalues in Lua.)

例子:使用闭包实现计数器

function newCounter ()
    local i = 0
    return function () -- anonymous function
        i = i + 1
        return i
    end
end

c1 = newCounter()
print(c1()) --> 1
print(c1()) --> 2

c2 = newCounter()
print(c2()) --> 1
print(c1()) --> 3
print(c2()) --> 2

In this code, the anonymous function refers to a non-local variable, i, to keep its counter. However, by the time we call the anonymous function, i is already out of scope, because the function that created this variable (newCounter) has returned. Nevertheless, Lua handles this situation correctly, using the concept of closure. Simply put, a closure is a function plus all it needs to access nonlocal variables correctly.

Technically speaking, what is a value in Lua is the closure, not the function. The function itself is just a prototype for closures. Nevertheless, we will continue to use the term “function” to refer to a closure whenever there is no possibility of confusion.


Parameters act as local variables that are initialized with the argument values:

	parlist ::= namelist [`,´ `...´] | `...´

When a function is called, the list of arguments is adjusted to the length of the list of parameters, unless the function is a variadic or vararg function, which is indicated by three dots (‘...’) at the end of its parameter list.

A vararg function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the function through a vararg expression, which is also written as three dots. The value of this expression is a list of all actual extra arguments, similar to a function with multiple results.

If a vararg expression is used inside another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the expression is used as the last element of a list of expressions, then no adjustment is made (unless that last expression is enclosed in parentheses).

As an example, consider the following definitions:

     function f(a, b) end
     function g(a, b, ...) end
     function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg expression:

     CALL            PARAMETERS
     
     f(3)             a=3, b=nil
     f(3, 4)          a=3, b=4
     f(3, 4, 5)       a=3, b=4
     f(r(), 10)       a=1, b=10
     f(r())           a=1, b=2
     
     g(3)             a=3, b=nil, ... -->  (nothing)
     g(3, 4)          a=3, b=4,   ... -->  (nothing)
     g(3, 4, 5, 8)    a=3, b=4,   ... -->  5  8
     g(5, r())        a=5, b=1,   ... -->  2  3

Results are returned using the return statement (see §2.4.4). If control reaches the end of a function without encountering a return statement, then the function returns with no results.

The colon syntax is used for defining methods, that is, functions that have an implicit extra parameter self. Thus, the statement

     function t.a.b.c:f (params) body end

is syntactic sugar for

     t.a.b.c.f = function (self, params) body end

2.6 – Visibility Rules

Lua is a lexically scoped language. The scope of variables begins at the first statement after their declaration and lasts until the end of the innermost block that includes the declaration. Consider the following example:

     x = 10                -- global variable
     do                    -- new block
       local x = x         -- new 'x', with value 10
       print(x)            --> 10
       x = x+1
       do                  -- another block
         local x = x+1     -- another 'x'
         print(x)          --> 12
       end
       print(x)            --> 11
     end
     print(x)              --> 10  (the global one)

Notice that, in a declaration like local x = x, the new x being declared is not in scope yet, and so the second x refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside their scope. A local variable used by an inner function is called an upvalue, or external local variable, inside the inner function.

Notice that each execution of a local statement defines new local variables. Consider the following example:

     a = {}
     local x = 20
     for i=1,10 do
       local y = 0
       a[i] = function () y=y+1; return x+y end
     end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses a different y variable, while all of them share the same x.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2301564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

PyTorch 源码学习:阅读经验 代码结构

分享自己在学习 PyTorch 源码时阅读过的资料。本文重点关注阅读 PyTorch 源码的经验和 PyTorch 的代码结构。因为 PyTorch 不同版本的源码实现有所不同&#xff0c;所以笔者在整理资料时尽可能按版本号升序&#xff0c;版本号见标题前[]。最新版本的源码实现还请查看 PyTorch 仓…

vscode复制到下一行

linux中默认快捷键是ctrl shift alt down/up 但是在vscode中无法使用&#xff0c;应该是被其他的东西绑定了&#xff0c;经测试&#xff0c;可以使用windows下的快捷键shift alt down/up { “key”: “shiftaltdown”, “command”: “editor.action.copyLinesDownAction”…

Fastgpt学习(5)- FastGPT 私有化部署问题解决

1.☺ 问题描述&#xff1a; Windows系统&#xff0c;本地私有化部署&#xff0c;postgresql数据库镜像日志持续报错" data directory “/var/lib/postgresql/data” has invalid permissions "&#xff0c;“ DETAIL: Permissions should be urwx (0700) or urwx,gr…

【Linux AnolisOS】配置Linux固定ip地址。然后在Windows上连接使用linux中docker容器里的redis和nacos。

1.关于将虚拟机ip地址更改为静态地址 &#xff0c;跟着下面这个视频搞的&#xff0c;不想看文章的可以看视频。 第四章-07-配置Linux固定IP地址哔哩哔哩bilibili 当用的centos9 视频里让我们打开网络配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 但是我打开时…

Linux应用之构建命令行解释器(bash进程)

目录 1.分析 2.打印输入提示符 3.读取并且处理输入字符串 4.创建子进程并切换 5.bash内部指令 6.完整代码 1.分析 当我们登录服务器的时候&#xff0c;命令行解释器就会自动加载出来。接下来我们就。在命令行中输入指令来达到我们想要的目的。 我们在命令行上输入的…

挪车小程序挪车二维码php+uniapp

一款基于FastAdminThinkPHP开发的匿名通知车主挪车微信小程序&#xff0c;采用匿名通话的方式&#xff0c;用户只能在有效期内拨打车主电话&#xff0c;过期失效&#xff0c;从而保护车主和用户隐私。提供微信小程序端和服务端源码&#xff0c;支持私有化部署。 更新日志 V1.0…

DockerDesktop更改默认的磁盘镜像地存储位置

DockerDesktop更改默认的磁盘镜像地存储位置 文章目录 DockerDesktop更改默认的磁盘镜像地存储位置1. 默认存储位置2. 新建一个目录3. 将磁盘镜像存储位置改为新建的目录下 1. 默认存储位置 2. 新建一个目录 如&#xff1a;D:\DiskImagelocationData 3. 将磁盘镜像存储位置改为…

GO语言的安装以及第一个Go语言程序

1. Go语言的安装与设置 官网:golang.org 国内下载:https://studygolang.com/dl 国内镜像:https://goproxy.cn/ 2. GOland的安装 Go 1.13 及以上&#xff08;推荐&#xff09; 打开你的终端并执行 $ go env -w GO111MODULEon $ go env -w GOPROXYhttps://goproxy.cn,direc…

SpringBoot速成(12)文章分类P15-P19

1.新增文章分类 1.Postman登录不上&#xff0c;可以从头registe->login一个新的成员:注意&#xff0c;跳转多个url时&#xff0c;post/get/patch记得修改成controller类中对应方法上写的 2.postman运行成功&#xff1a; 但表中不更新&#xff1a;细节有问题&#xff1a; c是…

(leetcode42 前缀后缀最值)接雨水

记忆化&#xff1a;打比方说前缀和 dp数组每个值代表了某一段计算过程 直接取值无需再计算就是记忆化 问题的核心思路 为了计算每个位置能接住多少水&#xff0c;我们需要知道在每个位置上方的水的容量。假设位置 i 是某个柱子的底部&#xff0c;要计算它能接多少水&#xff…

SpringBoot+uniApp日历备忘录小程序系统 附带详细运行指导视频

文章目录 一、项目演示二、项目介绍三、运行截图四、主要代码1.日历渲染代码&#xff1a;2.保存备忘录代码&#xff1a;3.删除备忘录代码&#xff1a; 一、项目演示 项目演示地址&#xff1a; 视频地址 二、项目介绍 项目描述&#xff1a;这是一个基于SpringBootuniApp框架开…

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现

分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现 目录 分类预测 | MFO-LSSVM飞蛾扑火算法优化最小二乘支持向量机多特征分类预测Matlab实现分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.Matlab实现MFO-LSSVM飞蛾扑火算法优化最小二…

Redis未授权访问漏洞原理

redis未授权访问漏洞 目录 redis未授权访问漏洞一、Redis介绍二、redis环境安装三、漏洞原理四、漏洞复现4.1 webshell提权4.2redis写入计划任务反弹shell4.3 ssh key免密登录4.4 Redis基于主从复制的RCE方式 五、Redis加固建议 一、Redis介绍 Redis&#xff0c;全称为Remote …

喜报!博睿数据案例获经观传媒“2024年度数字转型创新案例”!

本文已在“经观”APP中发表&#xff0c;点击下方文章链接查看原文&#xff1a; 2024科技创变纪&#xff1a;创新破局 变量启新 近日&#xff0c;经济观察报“2024年度卓越创新实践案例”榜单评选结果正式公布。博睿数据选送的案例“从零到一&#xff1a;可观测体系建设的探索…

【从0做项目】Java搜索引擎(4)——性能优化~烧脑~~~

本篇文章将对项目搜索引擎&#xff08;1&#xff09;~&#xff08;3&#xff09;进行性能优化&#xff0c;包括测试&#xff0c;优化思路&#xff0c;优化前后对比 目录 一&#xff1a;文件读取 二&#xff1a;实现多线程制作索引 1&#xff1a;代码分析 2&#xff1a;代码…

什么是网络安全审计?网络安全审计的作用...

网络安全审计通过对网络数据的采集、分析、识别&#xff0c;实时动态监测通信内容、网络行为和网络流量&#xff0c;发现和捕获各种敏感信息、违规行为&#xff0c;实时报警响应&#xff0c;全面记录网络系统中的各种会话和事件&#xff0c;实现对网络信息的智能关联分析、评估…

【核心算法篇十三】《DeepSeek自监督学习:图像补全预训练方案》

引言:为什么自监督学习成为AI新宠? 在传统监督学习需要海量标注数据的困境下,自监督学习(Self-Supervised Learning)凭借无需人工标注的特性异军突起。想象一下,如果AI能像人类一样通过观察世界自我学习——这正是DeepSeek图像补全方案的技术哲学。根据,自监督学习通过…

【Linux专栏】find命令+同步 实验

Linux & Oracle相关文档,希望互相学习,共同进步 风123456789~-CSDN博客 1.实验背景 需要把一个目录中所有文件,按照目录把某个时间点之前的同步到一个盘中,之后的同步备份到另一个盘中,实现不同时间段的备份。 本次实现目标:把common文件夹中 2025年之后的含文件夹…

vite配置scss全局变量

vite配置scss全局变量 创建单独文件variable.scss在其中定义变量 vite.config.ts中配置 import { defineConfig } from vite import vue from vitejs/plugin-vue import path from path// https://vite.dev/config/ export default defineConfig({plugins: [vue()],resolve:…

Qt开发①Qt的概念+发展+优点+应用+使用

目录 1. Qt的概念和发展 1.1 Qt的概念 1.2 Qt 的发展史&#xff1a; 1.3 Qt 的版本 2. Qt 的优点和应用 2.1 Qt 的优点&#xff1a; 2.2 Qt 的应用场景 2.3 Qt 的应用案例 3. 搭建 Qt 开发环境 3.1 Qt 的开发工具 3.2 Qt SDK 的下载和安装 3.3 Qt 环境变量配置和使…