算法——舞蹈链算法

news2025/2/21 7:48:05

一,基本概念

算法简介 

        舞蹈链算法(Dancing Links,简称 DLX)是一种高效解决精确覆盖问题的算法,实际上是一种数据结构,可以用来实现 X算法,以解决精确覆盖问题。由高德纳(Donald E. Knuth)提出 。

精准覆盖 

        什么是精确覆盖(Exact Cover)问题呢?就是在一个全集X中若干子集的集合为S。S* 是 S的一个子集,当且仅当X中的每一个元素在S*中恰好出现一次时,S*称之为一个精确覆盖。在计算机科学中,精确覆盖问题指找出这样的一种覆盖,或证明其不存在。这是一个NP-完全问题。

舞蹈链

        其实是一种特殊的数据结构,用于高效地实现对精确覆盖问题的求解。它基于双向循环链表,每个节点除了包含指向左右节点的指针外,还包含指向上方和下方节点的指针,这种结构使得在搜索过程中能够快速地对链表进行插入、删除和恢复操作。

数据结构设计

每个1的节点包含四个指针:leftrightupdown,形成双向十字链表。

每列有一个列头节点,记录该列中1的数量(用于优化搜索顺序)。

算法流程

  1. 选择列:优先选择当前剩余1最少的列(减少搜索分支)。

  2. 覆盖列:删除该列及其关联的所有行(避免后续搜索冲突)。

  3. 递归搜索:对剩余矩阵重复上述步骤。

  4. 回溯恢复:若当前路径无解,恢复被删除的列和行,尝试其他分支。

  5. 结束条件:当舞蹈链中的所有列都被覆盖(即矩阵中所有列都被删除)时,找到了一个精确覆盖解;如果遍历完所有可能的分支都没有找到解,则说明该问题无解。

 二,示例

例如,S = {A,B,C,D,E,F} 是全集 X = {1,2,3,4,5,6,7} 的一个子集的集合,其中:

A = {1, 4, 7}

B = {1, 4}

C = {4, 5, 7}

D = {3, 5, 6}

E = {2, 3, 6, 7}

F = {2, 7}

那么,S的一个子集 S* = {B, D, F} 是X的一个精确覆盖,因为 X 中的每个元素恰好在S*中出现了一次。

可以用0-1矩阵来表示精确覆盖问题。我们用矩阵的每行表示S的一个元素,也就是X的一个子集;用矩阵的每列表示X的一个元素。矩阵中的1代表这一列的元素存在于这一行对应的子集中,0代表不存在。那么精确覆盖问题可以转化成求出矩阵若干行的集合,使得集合中的每一列恰好都有一个1。

比如前面的问题可以用矩阵的形式表示成

步骤1

那么选择红色的B,D,F能满足每列都恰好包含一个1。

可以用 Knuth 提出的X算法来解决精确覆盖问题。X算法是一个非确定性的深度优先回溯算法。它的具体步骤如下:

1. 如果矩阵

A

为空(没有任何列),则当前局部解即为问题的一个解,返回成功;否则继续。

2. 根据一定方法选择第 c 列。如果某一列中没有 1,则返回失败,并去除当前局部解中最新加入的行。

选择第 r 行,使得

该步是非确定性的

(该步是非确定性的)。

将第 r 行加入当前局部解中。

对于满足

Ar,j=1

的每一列j,从矩阵

A2

中删除所有满足

Ai,j

的行,最后再删除第 j 列。

对所得比 A 小的新矩阵递归地执行此算法。

让我们用 X算法解决上面的精确覆盖问题。

首先,当前矩阵不为空,算法继续进行。那么先选择1最少的一列。因为 1,2,3,5,6 列都只有 2 个 1,因此我们随便选择 1 个,比如第 1 列。

步骤2

行 A 和 B 都含有 1,因此要在这两行中进行选择。

先尝试选择行 A。将行A加入到当前的解中。

步骤3

行A的 1,4,7 列为 1,根据第 5 步,需要把所有在 1,4,7 列中含有 1 的行都删除掉,因此需要删除掉行A,B,C,E,F,同时删除掉第 1,4,7 列

步骤4

删除之后,矩阵只剩下行 D 和第 2,3,5,6 列:

步骤5

进入递归,回到第 1 步,矩阵非空,算法继续执行。

再进入第2步,此时选择 1 最少的第 2 列,里面没有 1,因此返回失败,同时将行 A 从当前的解中移除;

算法进入另一个分支,选择行 B,并将其加入到当前的解中:

步骤6

行 B 的第 1,4 列为 1,因此要把 1,4 列中包含 1 的行都删掉。需要删除掉行 A,B,C,再删除掉 1,4 列。

步骤7

此时矩阵变为

步骤8

进入递归,回到第 1 步,矩阵非空,因此算法继续。

当前包含 1 最少的一列是第 5 列,那么将从第 5 列中选择含有 1 的行进行搜索。

步骤9

第 5 列中行 D 含有 1,因此选择行 D,将其加入当前解中,算法进入新的一层搜索。

步骤10

行 D 的第 3,5,6 列包含 1,我们要删掉这几列中包含 1 的所有行,同时删掉这几列

步骤11

那么我们需要删掉行 D,E 和第 3,5,6 列,矩阵变为

步骤12

再次递归执行,回到第 1 步,矩阵非空,因此算法继续

选择当前包含 1 最少的一列,这里选择第 2 列。第 2 列中只有行 F 包含 1, 因此选择行 F

将行 F 加入到当前解中,算法进入第 3 层搜索

步骤13

行 F 中第 2,7列为 1,第 2,7 列中行 F 包含 1,因此移除行 F 和第 2,7 列

步骤14

算法再次进入递归执行,回到第 1 步,此时所有的列都被移除了,矩阵为空,因此返回成功,找到了一个解:{B, D, F}

继续搜索,没有其他可以选择的行,返回上一层;

第2层也没有其他可以选择的行,再返回上一层;

第1层也没有其他可以选择的行,再返回上一层;

第0层也没有其他可以选择的行,算法终止。

以上就是 X 算法的执行过程。Knuth 提出 X 算法主要是为了说明舞蹈链的作用,他发现用舞蹈链来执行 X 算法效率特别高。那么什么是舞蹈链呢?它是基于双向链表的一种数据结构。

让我们先来看看双向链表:

双向链表1

上图是一个简单的双向链表,每个节点有两个指针,分别指向自己的前驱和后继节点。那么如果我们想把其中一个节点,比如 B 从链表中删掉,只需要执行下面的操作:

B.left.right = B.right

B.right.left = B.left

注意:此时虽然 B 从链表中移除了,但它的两个指针依然保持不变,还是指向之前的前驱和后继节点。

双向链表2

因此,如果我想把 B 再添加到链表原来的位置上,此时并不需要修改 B 的指针,只需要再把 B 的前驱和后继节点的指针恢复就可以了:

B.left.right = B

B.right.left = B

理解了这一点之后,让我们再来看看舞蹈链的结构是怎么样的:

Dancing links

上面这个图是一个舞蹈链的结构,描述的是前面 X 算法中用到的矩阵。它由几部分构成:

最上面的蓝色部分是一个水平的环状双向链表。最左边是头节点,它是整个数据结构的根节点。其余是列头节点,每个代表矩阵中的一列。

每一列又是一个纵向的环状双向链表。除了最上面的列头节点,其他的每个节点都代表前面的矩阵中的一个 1。这实际上是一个稀疏矩阵,为了优化存储和效率,只保留了值为 1 的节点,把每个节点按顺序保存到数组中。最早的 Dancing Links 算法,也就是 Knuth 在 2000 年发表的论文中,下面的每一行也都是一个双向链表。但后来他发现每一行在算法执行过程中实际上不会发生变化,因此他把水平的双向链表取消了,只保留了最顶上的列头节点之间的水平双向链表。下面的每一行之间的前后节点可以直接通过数组的索引得到。两边是Space节点,用来标记一行的开始和结束。

每个普通节点 A 都包含 4 个 字段,A.up 和 A.down 代表双向链表的两个指针,分别指向 A 上面和下面的节点。还有一个 A.col ,指向 A 所在列的头节点,需要根据这个字段定位到节点所在的列。另外还有一个 A.row,主要是方便在递归的过程中缓存当前的解。

列头节点还要再多几个字段,left 和 right 分别指向水平双向链表的左节点和右节点。另外还有一个 count 字段,代表这一列当前一共有几个元素。X 算法的第 2 步,选择 1 最少的列时会用到这个字段。

理解了舞蹈链的数据结构之后,我们再来看看是怎样用舞蹈链来实现 X 算法的。这部分算法很精妙,也是舞蹈链这个名字的来由,通过对链表上的节点反复删除和插入实现了递归的回溯,就好像一个个链表在舞台上翩翩起舞一样。

具体的算法实现可以参照 Knuth 的论文,我们还是用图的方式来说明一下。

(1)首先,判断链表是否为空,可以通过 head.right == head 来判断。如果为空则返回,并输出当前的解。

(2)不为空则选择当前节点数最少的列。如果只有列头节点,则返回失败。

选择一列

遍历这一列的每个节点,开始进行覆盖操作:

(1)首先将节点所在行作为解的一部分,加入到当前解中;

选择列中的一个节点所在的行

(2)遍历这一行的所有节点,将每个节点所在列都删除掉,同时删除掉与这些列有交集的所有行:

2a. 遍历节点所在列的每个节点,将每个节点所在行的所有节点从它所在的列中移除掉,同时将列头节点的计数减 1:

node.up.down = node.down

node.down.up = node.up

col_node.count -= 1

2b. 还要将这一列从链表中移除:

col_node.left.right = col_node.right

col_node.right.left = col_node.left

移除了选择行的所有列,和每一列有交集的所有行

进入递归调用,判断链表是否为空;

不为空则选择节点数最少的列,再遍历这一列的节点,进行覆盖操作:

移除掉所有节点之后,进入递归调用,发现链表不为空,但节点数最少的列中没有普通节点了,返回失败;

开始做链表的还原操作。注意还原的顺序需要和移除的顺序相反。如果我们是从上至下,从左至右移除节点,那么还原的时候就从右至左,从下至上。否则的话可能会出现问题,导致一个节点被还原多次,这样列中节点的计数就不准确了。

node.up.down = node

node.down.up = node

col_node.count += 1

并且把删除的列也取消覆盖

col_node.left.right = col_node

col_node.right.left = col_node

递归返回到上一层,还原之后,发现列中没有其他节点可以选择,再返回到上一层,选择下一个节点所在的行。

选择另一个节点所在行

和之前的方法相同,遍历这一行的所有节点,将每个节点所在列都删除掉,同时删除掉与这些列有交集的所有行:

移除了选择行的所有列,和每一列有交集的所有行

再选择节点最少的列,遍历这一列的所有节点的所在行:

选择节点最少的列,遍历这一列的节点所在行

遍历这一行的所有节点,删除掉每个节点所在列,以及与这些列有交集的所有行:

移除了选择行的所有列,和每一列有交集的所有行

再次进入递归调用,判断矩阵不为空,选择节点最少的一列,遍历每个节点,删除掉所在行的所有列,与这些列有交集的所有行,最后我们得到一个空矩阵。

空链表,只剩头节点

此时将得到的解输出,并返回,接下来还要进行还原操作,然后搜索下一个解。

三、代码

class Node:
    def __init__(self):
        self.left = self.right = self.up = self.down = self
        self.column = None  # 列头节点
        self.row = None     # 行标识

def solve(matrix):
    # 构建舞蹈链
    head = build_dancing_links(matrix)
    solution = []
    search(head, solution)

def search(head, solution):
    if head.right == head:
        # 找到解,输出结果
        return True
    # 选择1最少的列
    col = choose_column(head)
    cover(col)
    # 遍历该列的每一行
    row_node = col.down
    while row_node != col:
        solution.append(row_node.row)
        # 覆盖该行关联的所有列
        right_node = row_node.right
        while right_node != row_node:
            cover(right_node.column)
            right_node = right_node.right
        # 递归搜索
        if search(head, solution):
            return True
        # 回溯
        solution.pop()
        left_node = row_node.left
        while left_node != row_node:
            uncover(left_node.column)
            left_node = left_node.left
        row_node = row_node.down
    uncover(col)
    return False
class Node:
    def __init__(self):
        self.left = self.right = self.up = self.down = self
        self.col = self.row = None

class DLX:
    def __init__(self):
        self.root = Node()
        self.columns = {}
        self.answer = []

    def add_column(self, name):
        node = Node()
        node.col = node
        node.row = None
        node.left = self.root.left
        node.right = self.root
        self.root.left.right = node
        self.root.left = node
        self.columns[name] = node

    def add_row(self, row_data):
        first = None
        last = None
        for col_name, value in row_data.items():
            if value == 1:
                node = Node()
                node.col = self.columns[col_name]
                node.row = row_data
                node.up = node.col.up
                node.down = node.col
                node.col.up.down = node
                node.col.up = node
                if first is None:
                    first = node
                else:
                    last.right = node
                    node.left = last
                last = node
        first.left = last
        last.right = first

    def cover_column(self, col):
        col.right.left = col.left
        col.left.right = col.right
        i = col.down
        while i!= col:
            j = i.right
            while j!= i:
                j.down.up = j.up
                j.up.down = j.down
                j = j.right
            i = i.down

    def uncover_column(self, col):
        i = col.up
        while i!= col:
            j = i.left
            while j!= i:
                j.down.up = j
                j.up.down = j
                j = j.left
            i = i.up
        col.right.left = col
        col.left.right = col

    def search(self, k):
        if self.root.right == self.root:
            print("Solution found:", self.answer)
            return True
        c = self.root.right
        i = c.down
        min_size = float('inf')
        while i!= c:
            size = 0
            j = i.right
            while j!= i:
                size += 1
                j = j.right
            if size < min_size:
                min_size = size
                c = i
            i = i.down
        self.cover_column(c.col)
        i = c.down
        while i!= c:
            self.answer.append(i.row)
            j = i.right
            while j!= i:
                self.cover_column(j.col)
                j = j.right
            if self.search(k + 1):
                return True
            self.answer.pop()
            i = i.down
            j = i.left
            while j!= i:
                self.uncover_column(j.col)
                j = j.left
        self.uncover_column(c.col)
        return False

 运行

# 使用示例
dlx = DLX()
dlx.add_column('C1')
dlx.add_column('C2')
dlx.add_column('C3')
dlx.add_row({'C1': 1, 'C2': 0, 'C3': 1})
dlx.add_row({'C1': 0, 'C2': 1, 'C3': 1})
dlx.add_row({'C1': 1, 'C2': 1, 'C3': 0})
dlx.search(0)

四、算法优势

  • 高效剪枝:通过列头节点统计剩余1的数量,优先选择约束最强的列,大幅减少搜索空间。

  • 快速状态恢复:链表删除和恢复的时间复杂度为O(1),回溯代价极低。

  • 通用性:适用于所有可转化为精确覆盖的问题。

五、应用领域

  • 数独求解:数独问题可以很自然地转化为精确覆盖问题,舞蹈链算法能够快速有效地解决数独谜题,无论是人工设计的数独题目还是大规模生成数独游戏。
  • 计算机视觉:在图像分割、目标识别等任务中,舞蹈链算法可用于解决一些组合优化问题,例如将图像中的像素点精确地划分到不同的目标区域。
  • 网络设计:在网络拓扑设计、资源分配等方面,舞蹈链算法可以帮助找到满足特定要求的最优网络配置方案,例如在保证网络连通性的前提下,合理分配网络设备和链路资源。
  • N皇后问题:将棋盘转化为精确覆盖矩阵。

  • 拼图游戏:如俄罗斯方块填充、多米诺骨牌覆盖等。

总结

舞蹈链算法通过双向链表的动态调整,将精确覆盖问题的搜索效率提升到极致。尽管实现复杂,但它在处理组合优化问题时表现卓越,尤其适合约束严格的场景。理解其核心在于掌握链表操作与回溯思想的结合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2300798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

WPF8-常用控件

目录 写在前面&#xff1a;1. 按钮控件1.1. Button 按钮1.2. RepeatButton:长按按钮1.3. RadioButton:单选按钮 2. 数据显示控件2.1. TextBlock&#xff1a;只读文本控件2.2. Lable&#xff1a;标签 显示文本控件2.3. ListBox&#xff1a;显示可选择项的列表2.4. DataGrid&…

代码随想录刷题day24|(字符串篇)151.反转字符串中的单词

一、题目思路 1.快慢指针移除字符串首尾以及单词中的多余空格 类似前面数组篇--移除元素代码随想录刷题day02|&#xff08;数组篇&#xff09;27.移除元素、26.删除有序数组中的重复项_代码随想录网站-CSDN博客 快指针fast遍历整个字符串&#xff0c;慢指针slow指向新字符串…

VMware按照的MacOS升级后无法联网

背景 3年前公司使用Flutter开发了一款app&#xff0c;现在app有微小改动需要重新发布到AppStore 问题 问题是原来的Vmware搭建的开发环境发布App失败了 提示&#xff1a;App需要使用xcode15IOS 17 SDK重新构建&#xff0c;这样的话MacOS至少需要升级到13.5 Xcode - 支持 - Ap…

DeepSeek V3和R1

DeepSeek V3 和 R1 是深度求索&#xff08;DeepSeek&#xff09;推出的两款大模型&#xff0c;基于混合专家架构&#xff08;MoE&#xff09;&#xff0c;但在设计目标、训练方法和应用场景上存在显著差异。以下是两者的详细对比与补充内容&#xff1a; DeepSeek V3和R1 一、模…

【操作系统】深入理解Linux物理内存

物理内存的组织结构 我们平时所称的内存也叫随机访问存储器也叫 RAM 。RAM 分为两类&#xff1a; 一类是静态 RAM&#xff08; SRAM &#xff09;&#xff0c;这类 SRAM 用于 CPU 高速缓存 L1Cache&#xff0c;L2Cache&#xff0c;L3Cache。其特点是访问速度快&#xff0c;访…

记一次一波三折的众测SRC经历

视频教程和更多福利在我主页简介或专栏里 &#xff08;不懂都可以来问我 专栏找我哦&#xff09; 目录&#xff1a; 前言 波折一&#xff1a;RCE漏洞利用失败 波折二&#xff1a;SQL时间盲注 波折三&#xff1a;寻找管理后台 总结 前言 先谈个人SRC心得体会吧&#xff0c;我虽…

POI优化Excel录入

57000单词原始录入时间258S 核心代码: List<Word> wordBookList ExcelUtil.getReader(file.getInputStream()).readAll(Word.class);if (!CollectionUtil.isEmpty(wordBookList)) {for (Word word : wordBookList) {//逐条向数据库中插入单词wordMapper.insert(word);}…

HarmonyOS进程通信及原理

大家好&#xff0c;我是学徒小z&#xff0c;最近在研究鸿蒙中一些偏底层原理的内容&#xff0c;今天分析进程通信给大家&#xff0c;请用餐&#x1f60a; 文章目录 进程间通信1. 通过公共事件&#xff08;ohos.commonEventManager&#xff09;公共事件的底层原理 2. IPC Kit能…

DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型

注&#xff1a;此文章内容均节选自充电了么创始人&#xff0c;CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》&#xff08;人工智能科学与技术丛书&#xff09;【陈敬雷编著】【清华大学出版社】 文章目录 DeepSeek大模型技术系列一DeepSeek核心算法解析&#xff1a;如何…

【算法】双指针(上)

目录 双指针 左右指针(对撞指针) 快慢指针 移动零 双指针解题 复写零 暴力解题 双指针解题(快慢指针) 快乐数 双指针解题(快慢指针) 盛最多水的容器 暴力解题(会超时) 双指针解题(左右指针) 有效三角形的个数 暴力解题 双指针解题(左右指针) 双指针 常见的双指…

深度学习模型常用激活函数集合

激活函数是深度学习模型中的关键组成部分&#xff0c;用于引入非线性特性&#xff0c;使神经网络能够学习复杂的模式和映射关系&#xff1b;神经网络本质上是一个复合函数。如果没有激活函数&#xff0c;无论网络有多少层&#xff0c;其输出都只是输入的线性组合。激活函数通过…

WebAssembly 3.0发布:浏览器端高性能计算迎来新突破!

“WebAssembly 3.0来了&#xff0c;浏览器端的高性能计算将彻底改变&#xff01;”2025年&#xff0c;WebAssembly&#xff08;Wasm&#xff09;迎来了重大更新——WebAssembly 3.0正式发布。这次更新不仅支持多线程和SIMD指令集&#xff0c;还优化了内存管理&#xff0c;让浏览…

ERP对制造业务有何价值?

ERP 的定义 在定义 ERP 之前&#xff0c;我们先从其首字母缩写说起&#xff0c;ERP 代表企业资源规划。我们可以将 ERP 定义为一种企业软件&#xff0c;它帮助组织管理日常业务。从根本上讲&#xff0c;ERP 将客户管理、人力资源、商业智能、财务管理、库存以及供应链功能整合…

哈希表(C语言版)

文章目录 哈希表原理实现(无自动扩容功能)代码运行结果 分析应用 哈希表 如何统计一段文本中&#xff0c;小写字母出现的次数? 显然&#xff0c;我们可以用数组 int table[26] 来存储每个小写字母出现的次数&#xff0c;而且这样处理&#xff0c;效率奇高。假如我们想知道字…

亚马逊企业购大客户业务拓展经理张越:跨境电商已然成为全球零售电商领域中熠熠生辉的强劲增长点

2024年12月26日-27日&#xff0c;由中国产业海外发展协会上合-海湾双链专委会指导、极新主办的「重度垂直2024极新AIGC峰会」先后在深圳、香港两地顺利开幕。本届峰会以AI的垂直应用与出海为核心主题&#xff0c;旨在深入探讨AI技术在全球范围内的融合应用与发展趋势&#xff0…

VirtualBox 中使用 桥接网卡 并设置 MAC 地址

在 VirtualBox 中使用 桥接网卡 并设置 MAC 地址&#xff0c;可以按照以下步骤操作&#xff1a; 步骤 1&#xff1a;设置桥接网卡 打开 VirtualBox&#xff0c;选择你的虚拟机&#xff0c;点击 “设置” (Settings)。进入 “网络” (Network) 选项卡。在 “适配器 1” (Adapt…

idea无法联网,离线安装插件

插件地址&#xff1a;https://plugins.jetbrains.com/ JetBrains Marketplace 如果无法进入&#xff0c;可以试试 配置hosts 3.163.125.103 plugins.jetbrains.com ip 变了&#xff0c;可以查询个最新的&#xff1a; https://tool.chinaz.com/speedtest/plugins.jetbrai…

网络安全中的机器学习

当涉及到网络安全时&#xff0c;技术一直是保护系统免受攻击和数据泄露的关键。在这篇论文中&#xff0c;我将介绍一些当前在网络安全领域使用的关键技术&#xff0c;包括加密&#xff0c;身份验证和防火墙。 首先&#xff0c;加密是网络安全中最常见的技术之一。加密是指使用算…

halcon 条形码、二维码识别、opencv识别

一、条形码 函数介绍 create_bar_code_model * 1.创建条码读取器的模板 * 参数一&#xff1a;通用参数的名称&#xff0c;针对条形码模型进行调整。默认值为空 * 参数二&#xff1a;针对条形码模型进行调整 * 参数三&#xff1a;条形码模型的句柄。 create_bar_code_model (…

平板作为电脑拓展屏

有线串流&#xff08;速度更快&#xff09; spacedesk 打开usb对安卓的连接 用usb线直接连接电脑和平板 无线串流&#xff08;延迟高&#xff0c;不推荐&#xff09; todesk pc和手机端同时下载软件&#xff0c;连接后可以进行远程控制或扩展屏幕 spacedesk 连接到同一个…