【嵌入式Linux应用开发基础】read函数与write函数

news2025/3/12 12:35:43

目录

一、read 函数

1.1. 函数原型

1.2. 参数说明

1.3. 返回值

1.4. 示例代码

二、write 函数

2.1. 函数原型

2.2. 参数说明

2.3. 返回值

2.4. 示例代码

三、关键注意事项

3.1 部分读写

3.2 错误处理

3.3 阻塞与非阻塞模式

3.4 数据持久化

3.5 线程安全

四、嵌入式场景应用

4.1. 文件数据读写

4.2. 设备驱动交互

4.3. 进程间通信(IPC)

4.4. 网络通信

五、常见问题

5.1. read函数常见问题

5.2. write函数常见问题

5.3 通用建议

六、总结


在嵌入式Linux应用开发中,readwrite函数是文件I/O操作中最基础、最常用的两个系统调用。它们用于从文件描述符(file descriptor)指向的文件或设备中读取数据和向其中写入数据。

一、read 函数

1.1. 函数原型

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

1.2. 参数说明

  • fd:文件描述符,由 open 函数返回的一个非负整数,用于标识要读取数据的文件、设备等。
  • buf:指向用于存储读取数据的缓冲区的指针,数据将被读取到这个缓冲区中。
  • count:期望读取的字节数,即希望从文件描述符对应的文件或设备中读取的最大字节数。

1.3. 返回值

  • 大于 0:表示实际成功读取的字节数。
  • 等于 0:表示已经到达文件末尾(EOF),没有更多数据可供读取。
  • 等于 -1:表示读取操作失败,此时 errno 会被设置为相应的错误码,用于指示具体的错误原因。

1.4. 示例代码

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
 
int main() {
    int fd = open("example.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
 
    char buffer[100];
    ssize_t bytesRead = read(fd, buffer, sizeof(buffer) - 1);
    if (bytesRead == -1) {
        perror("read");
        close(fd);
        return 1;
    }
 
    buffer[bytesRead] = '\0'; // 确保字符串以NULL结尾
    printf("Read %zd bytes: %s\n", bytesRead, buffer);
 
    close(fd);
    return 0;
}

二、write 函数

2.1. 函数原型

#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

2.2. 参数说明

  • fd:文件描述符,标识要写入数据的文件、设备等。
  • buf:指向包含要写入数据的缓冲区的指针。
  • count:要写入的字节数,即希望将缓冲区中多少字节的数据写入到文件描述符对应的文件或设备中。

2.3. 返回值

  • 大于 0:表示实际成功写入的字节数。
  • 等于 0:通常表示没有写入任何数据,可能是由于某些特殊情况(如文件系统已满但还未返回错误)。
  • 等于 -1:表示写入操作失败,errno 会被设置为相应的错误码,用于指示具体的错误原因。

2.4. 示例代码

#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

int main() {
    int fd = open("output.txt", O_WRONLY | O_CREAT | O_TRUNC, 0644);
    if (fd == -1) {
        perror("open");
        return 1;
    }

    const char *message = "Hello, World!\n";
    ssize_t bytesWritten = write(fd, message, strlen(message));
    if (bytesWritten == -1) {
        perror("write");
        close(fd);
        return 1;
    }

    printf("Written %zd bytes\n", bytesWritten);

    close(fd);
    return 0;
}

三、关键注意事项

3.1 部分读写

  • 原因:数据未就绪(如网络)、资源限制(如管道缓冲区满)、信号中断等。

  • 处理方式:循环调用函数,直至完成全部数据传输。

    示例代码(读操作):

ssize_t total_read = 0;
while (total_read < count) {
    ssize_t n = read(fd, buf + total_read, count - total_read);
    if (n == 0) break; // EOF
    if (n < 0 && errno != EINTR) break; // 非中断错误
    if (n > 0) total_read += n;
}

3.2 错误处理

  • 常见errno

    • EAGAIN/EWOULDBLOCK:非阻塞模式下无数据可读或写缓冲区满。

    • EINTR:操作被信号中断。

    • EBADF:无效文件描述符。

  • 处理建议

    • EINTR需重试操作。

    • 对非阻塞I/O的EAGAIN需结合select/poll等待就绪。

3.3 阻塞与非阻塞模式

  • 设置非阻塞模式

int flags = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);

3.4 数据持久化

  • 立即同步:调用fsync(fd)强制将内核缓冲区数据写入存储设备。

3.5 线程安全

  • 多线程操作同一文件描述符需加锁(如pthread_mutex)。

四、嵌入式场景应用

4.1. 文件数据读写

①配置文件读取

  • 场景:嵌入式系统中的应用程序常常需要从配置文件中读取参数,以此来初始化系统。例如,网络设备的配置文件包含 IP 地址、子网掩码、网关等信息,应用程序需要读取这些信息来完成网络配置。

  • 代码示例

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#define BUFFER_SIZE 1024

int main() {
    int fd = open("config.txt", O_RDONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    char buffer[BUFFER_SIZE];
    ssize_t bytes_read = read(fd, buffer, BUFFER_SIZE);
    if (bytes_read == -1) {
        perror("read");
    } else if (bytes_read > 0) {
        buffer[bytes_read] = '\0';
        // 处理读取到的配置信息
    }
    close(fd);
    return 0;
}

 ②数据文件写入

  • 场景:在数据采集系统中,需要将采集到的数据存储到文件中,以便后续分析和处理。比如,温度传感器每隔一段时间采集一次温度数据,应用程序将这些数据写入到文件中。
  • 代码示例
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>

#define DATA "25.5"

int main() {
    int fd = open("data.txt", O_WRONLY | O_CREAT | O_APPEND, 0644);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    ssize_t bytes_written = write(fd, DATA, strlen(DATA));
    if (bytes_written == -1) {
        perror("write");
    }
    close(fd);
    return 0;
}

4.2. 设备驱动交互

①传感器数据读取

  • 场景:嵌入式系统通常会连接各种传感器,如加速度计、陀螺仪等。应用程序通过 read 函数从相应的设备文件中读取传感器数据。
  • 代码示例
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#define SENSOR_DEVICE "/dev/sensor"
#define BUFFER_SIZE 32

int main() {
    int fd = open(SENSOR_DEVICE, O_RDONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    char buffer[BUFFER_SIZE];
    ssize_t bytes_read = read(fd, buffer, BUFFER_SIZE);
    if (bytes_read == -1) {
        perror("read");
    } else if (bytes_read > 0) {
        buffer[bytes_read] = '\0';
        // 处理传感器数据
    }
    close(fd);
    return 0;
}

②设备控制命令写入

  • 场景:对于一些可控制的设备,如 LED 灯、电机等,应用程序可以通过 write 函数向设备文件写入控制命令,从而实现对设备的控制。
  • 代码示例
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <string.h>

#define LED_DEVICE "/dev/led"
#define COMMAND "ON"

int main() {
    int fd = open(LED_DEVICE, O_WRONLY);
    if (fd == -1) {
        perror("open");
        return 1;
    }
    ssize_t bytes_written = write(fd, COMMAND, strlen(COMMAND));
    if (bytes_written == -1) {
        perror("write");
    }
    close(fd);
    return 0;
}

③串口/UART通信

串口设备(如/dev/ttyS0)是嵌入式系统中常见的通信接口,readwrite用于收发数据:

// 配置串口后...
char tx_data[] = "Hello UART!";
write(uart_fd, tx_data, strlen(tx_data)); // 发送数据

char rx_data[32];
ssize_t len = read(uart_fd, rx_data, sizeof(rx_data)); // 接收数据

4.3. 进程间通信(IPC)

①管道通信

  • 场景:在嵌入式系统中,不同进程之间可能需要进行数据交换。管道是一种简单的进程间通信方式,一个进程通过 write 函数向管道写入数据,另一个进程通过 read 函数从管道读取数据。
  • 代码示例
#include <stdio.h>
#include <unistd.h>
#include <string.h>

#define BUFFER_SIZE 1024

int main() {
    int pipefd[2];
    if (pipe(pipefd) == -1) {
        perror("pipe");
        return 1;
    }

    pid_t pid = fork();
    if (pid == -1) {
        perror("fork");
        return 1;
    }

    if (pid == 0) {
        // 子进程:读取数据
        close(pipefd[1]);
        char buffer[BUFFER_SIZE];
        ssize_t bytes_read = read(pipefd[0], buffer, BUFFER_SIZE);
        if (bytes_read == -1) {
            perror("read");
        } else if (bytes_read > 0) {
            buffer[bytes_read] = '\0';
            printf("Child process read: %s\n", buffer);
        }
        close(pipefd[0]);
    } else {
        // 父进程:写入数据
        close(pipefd[0]);
        const char *message = "Hello from parent!";
        ssize_t bytes_written = write(pipefd[1], message, strlen(message));
        if (bytes_written == -1) {
            perror("write");
        }
        close(pipefd[1]);
    }

    return 0;
}

4.4. 网络通信

套接字数据读写

  • 场景:在嵌入式网络应用中,通过套接字进行网络通信时,使用 read 函数接收网络数据,使用 write 函数发送网络数据。
  • 代码示例(简单 TCP 客户端)
#include <stdio.h>
#include <unistd.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <string.h>

#define SERVER_IP "127.0.0.1"
#define SERVER_PORT 8080
#define BUFFER_SIZE 1024

int main() {
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd == -1) {
        perror("socket");
        return 1;
    }

    struct sockaddr_in server_addr;
    server_addr.sin_family = AF_INET;
    server_addr.sin_port = htons(SERVER_PORT);
    inet_pton(AF_INET, SERVER_IP, &server_addr.sin_addr);

    if (connect(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) == -1) {
        perror("connect");
        close(sockfd);
        return 1;
    }

    const char *message = "Hello, server!";
    ssize_t bytes_written = write(sockfd, message, strlen(message));
    if (bytes_written == -1) {
        perror("write");
    }

    char buffer[BUFFER_SIZE];
    ssize_t bytes_read = read(sockfd, buffer, BUFFER_SIZE);
    if (bytes_read == -1) {
        perror("read");
    } else if (bytes_read > 0) {
        buffer[bytes_read] = '\0';
        printf("Received from server: %s\n", buffer);
    }

    close(sockfd);
    return 0;
}

五、常见问题

5.1. read函数常见问题

①读取到的字节数少于请求数

  • 原因
    • 读普通文件时,在读到请求字节数之前已到达文件尾端。
    • 从终端设备读时,通常一次最多读一行。
    • 从网络读时,网络中的缓冲机构可能造成返回值小于请求读的字节数。
    • 某些面向记录的设备(如磁带),一次最多返回一个记录。
  • 解决方案
    • 在读取文件时,需要检查返回值是否小于请求字节数,并处理文件尾端的情况。
    • 对于从终端设备或网络读取的数据,需要采用适当的缓冲机制来处理数据。

②读取操作失败

  • 原因
    • 文件描述符无效或没有读权限。
    • 提供的缓冲区指针无效。
    • 文件已被其他进程锁定或删除。
  • 解决方案
    • 确保文件描述符有效且具有读权限。
    • 检查缓冲区指针的有效性。
    • 使用文件锁或其他同步机制来避免文件被其他进程锁定或删除。

③读取的数据不准确

  • 原因
    • 文件指针未正确设置。
    • 文件内容在读取过程中被其他进程修改。
  • 解决方案
    • 在读取文件之前,确保文件指针已正确设置到所需的位置。
    • 使用文件锁或其他同步机制来避免文件内容在读取过程中被其他进程修改。

5.2. write函数常见问题

①写入操作失败

  • 原因
    • 文件描述符无效或没有写权限。
    • 磁盘已满或文件系统已满。
    • 提供的缓冲区指针无效。
  • 解决方案
    • 确保文件描述符有效且具有写权限。
    • 检查磁盘和文件系统的剩余空间。
    • 检查缓冲区指针的有效性。

②写入的字节数少于请求数

  • 原因
    • 磁盘已满或文件系统限制导致无法写入更多数据。
    • 网络或设备缓冲区已满,导致写入操作被阻塞或提前返回。
  • 解决方案
    • 在写入文件之前,检查磁盘和文件系统的剩余空间。
    • 对于网络或设备写入操作,需要采用适当的缓冲机制和重试策略来处理写入失败的情况。

③写入的数据未立即生效

  • 原因:数据被写入内核缓冲区,而尚未被刷新到磁盘。
  • 解决方案:使用fsyncfdatasync函数来强制将缓冲区中的数据同步到磁盘。

5.3 通用建议

  • 错误处理
    • 在使用readwrite函数时,务必检查返回值,并根据返回值进行相应的错误处理。
    • 可以使用errno变量来获取更详细的错误信息。
  • 资源管理
    • 在使用文件描述符时,要确保在不再需要时关闭它们,以释放系统资源。
    • 对于网络套接字或其他资源,也需要进行适当的资源管理和释放。
  • 同步与并发
    • 在多进程或多线程环境中,需要确保对文件或其他资源的访问是同步的,以避免数据竞争和不一致性。
    • 可以使用文件锁、信号量或其他同步机制来实现这一点。

六、总结

readwrite函数是嵌入式Linux应用开发中用于文件I/O操作的基础工具。通过这两个函数,可以实现从文件或设备读取数据和向文件或设备写入数据。了解并正确使用这些函数,对于开发稳定、高效的嵌入式应用程序至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2299836.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

15.1 Process(进程)类

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 通常开发时想要获得进程是比较困难的事&#xff0c;必须要调用CreateToolhelpSnapshot、ProcessFirst、ProcessNext等API或者诸如 Zw…

CentOS 7 企业级Redis 7部署指南

CentOS 7 企业级Redis 7部署指南 目录导航 一、环境准备 1.1 依赖管理 二、离线安装 2.1 源码编译安装2.2 目录结构规范 三、生产配置 3.1 主配置文件3.2 配置生成脚本 四、系统集成 4.1 Systemd服务文件4.2 服务管理命令 五、安全加固 5.1 网络安全配置5.2 审计配置 六、性能…

消息中间件深度剖析:以 RabbitMQ 和 Kafka 为核心

在现代分布式系统和微服务架构的构建中&#xff0c;消息中间件作为一个不可或缺的组件&#xff0c;承担着系统间解耦、异步处理、流量削峰、数据传输等重要职能。尤其是在面临大规模并发、高可用性和可扩展性需求时&#xff0c;如何选择合适的消息中间件成为了开发者和架构师们…

大语言模型简史:从Transformer(2017)到DeepSeek-R1(2025)的进化之路

2025年初&#xff0c;中国推出了具有开创性且高性价比的「大型语言模型」&#xff08;Large Language Model — LLM&#xff09;DeepSeek-R1&#xff0c;引发了AI的巨大变革。本文回顾了LLM的发展历程&#xff0c;起点是2017年革命性的Transformer架构&#xff0c;该架构通过「…

java八股文-spring

目录 1. spring基础 1.1 什么是Spring&#xff1f; 1.2 Spring有哪些优点&#xff1f; 1.3 Spring主要模块 1.4 Spring常用注解 1.5 Spring中Bean的作用域 1.6 Spring自动装配的方式 1.7 SpringBean的生命周期 1.8 多级缓存 1.9 循环依赖&#xff1f; 1 .8.1 原因 1.8…

NLP 八股 DAY1:BERT

BERT全称&#xff1a;Pre-training of deep bidirectional transformers for language understanding&#xff0c;即深度双向Transformer。 模型训练时的两个任务是预测句⼦中被掩盖的词以及判断输⼊的两个句⼦是不是上下句。在预训练 好的BERT模型后⾯根据特定任务加上相应的⽹…

蓝桥与力扣刷题(230 二叉搜索树中第k小的元素)

题目&#xff1a;给定一个二叉搜索树的根节点 root &#xff0c;和一个整数 k &#xff0c;请你设计一个算法查找其中第 k 小的元素&#xff08;从 1 开始计数&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,1,4,null,2], k 1 输出&#xff1a;1示例 2&#xff…

半遮挡检测算法 Detecting Binocular Half-Occlusions

【1. 背景】&#xff1a; 本文分析【Detecting Binocular Half-Occlusions&#xff1a;Empirical Comparisons of Five Approaches】Geoffrey Egnal和Richard P. Wildes于2002年发表在IEEE Transactions on Pattern Analysis and Machine Intelligence上&#xff0c;这是1篇中…

PHP培训机构教务管理系统小程序

&#x1f511; 培训机构教务管理系统——智慧教育&#xff0c;高效管理新典范 &#x1f680; 这款教务管理系统&#xff0c;是基于前沿的ThinkPHP框架与Uniapp技术深度融合&#xff0c;匠心打造的培训机构管理神器。它犹如一把开启高效运营与精细管理的金钥匙&#xff0c;专为…

无人机不等同轴旋翼架构设计应用探究

“结果显示&#xff0c;对于不等组合&#xff0c;用户应将较小的螺旋桨置于上游以提高能效&#xff0c;但若追求最大推力&#xff0c;则两个相等的螺旋桨更为理想。” 在近期的研究《不等同轴旋翼性能特性探究》中&#xff0c;Max Miles和Stephen D. Prior博士深入探讨了不同螺…

CTFHub技能树-密码口令wp

目录 引言弱口令默认口令 引言 仅开放如下关卡 弱口令 通常认为容易被别人&#xff08;他们有可能对你很了解&#xff09;猜测到或被破解工具破解的口令均为弱口令。 打开环境&#xff0c;是如下界面&#xff0c;尝试一些弱口令密码无果 利用burpsuite抓包&#xff0c;然后爆…

【NLP251】BertTokenizer 的全部 API 及 使用案例

BertTokenizer 是 Hugging Face 的 transformers 库中用于处理 BERT 模型输入的分词器类。它基于 WordPiece 分词算法&#xff0c;能够将文本分割成词汇单元&#xff08;tokens&#xff09;&#xff0c;并将其转换为 BERT 模型可以理解的格式。BertTokenizer 是 BERT 模型的核心…

【MySQL常见疑难杂症】常见文件及其所存储的信息

1、MySQL配置文件的读取顺序 &#xff08;非Win&#xff09;/etc/my.cnf、/etc/mysql/my.cnf、/usr/local/mysql/etc/my.cnf、&#xff5e;/.my.cnf 可以通过命令查看MySQL读取配置文件的顺序 [roothadoop01 ~]# mysql --help |grep /etc/my.cnf /etc/my.cnf /etc/mysql/my.c…

IDEA集成DeepSeek

引言 随着数据量的爆炸式增长&#xff0c;传统搜索技术已无法满足用户对精准、高效搜索的需求。 DeepSeek作为新一代智能搜索技术&#xff0c;凭借其强大的语义理解与深度学习能力&#xff0c;正在改变搜索领域的游戏规则。 对于 Java 开发者而言&#xff0c;将 DeepSeek 集成…

leetcode:627. 变更性别(SQL解法)

难度&#xff1a;简单 SQL Schema > Pandas Schema > Salary 表&#xff1a; ----------------------- | Column Name | Type | ----------------------- | id | int | | name | varchar | | sex | ENUM | | salary | int …

SQLMesh系列教程-3:SQLMesh模型属性详解

SQLMesh 的 MODEL 提供了丰富的属性&#xff0c;用于定义模型的行为、存储、调度、依赖关系等。通过合理配置这些属性&#xff0c;可以构建高效、可维护的数据管道。在 SQLMesh 中&#xff0c;MODEL 是定义数据模型的核心结构&#xff0c;初学SQLMesh&#xff0c;定义模型看到属…

【Leetcode 952】按公因数计算最大组件大小

题干 给定一个由不同正整数的组成的非空数组 nums &#xff0c;考虑下面的图&#xff1a; 有 nums.length 个节点&#xff0c;按从 nums[0] 到 nums[nums.length - 1] 标记&#xff1b;只有当 nums[i] 和 nums[j] 共用一个大于 1 的公因数时&#xff0c;nums[i] 和 nums[j]之…

【第4章:循环神经网络(RNN)与长短时记忆网络(LSTM)— 4.6 RNN与LSTM的变体与发展趋势】

引言:时间序列的魔法钥匙 在时间的长河中,信息如同涓涓细流,绵延不绝。而如何在这无尽的数据流中捕捉、理解和预测,正是循环神经网络(RNN)及其变体长短时记忆网络(LSTM)所擅长的。今天,我们就来一场深度探索,揭开RNN与LSTM的神秘面纱,看看它们如何在时间序列的海洋…

简单几个步骤完成 Oracle 到金仓数据库(KingbaseES)的迁移目标

作为国产数据库的领军选手&#xff0c;金仓数据库&#xff08;KingbaseES&#xff09;凭借其成熟的技术架构和广泛的市场覆盖&#xff0c;在国内众多领域中扮演着至关重要的角色。无论是国家电网、金融行业&#xff0c;还是铁路、医疗等关键领域&#xff0c;金仓数据库都以其卓…

八、SPI读写XT25数据

8.1 SPI 简介 SPI&#xff08;Serial Peripheral Interface&#xff0c;串行外设接口&#xff09;是一种同步串行通信协议&#xff0c;广泛用于嵌入式系统中连接微控制器与外围设备&#xff0c;如传感器、存储器、显示屏等。 主要特点 1. 全双工通信&#xff1a;支持同时发送…