DeepSeek-R1 通过其卓越的推理性能和灵活的训练机制,在 2025 年的春节期间受到了广泛关注。
DeepSeek-R1 是一款高性能的 AI 推理模型,主要通过强化学习技术来增强模型在复杂任务场景下的推理能力。
在本地部署 DeepSeek-R1 时,尤其是完整的 671b 参数版本,对硬件的需求相对较高。
ollama官网:deepseek-r1
模型太大,国内下载太慢,而且老中断,怎么办?请看教程:如何快速下载Huggingface上的超大模型,不用梯子,以Deepseek-R1为例子_deepseek r1模型下载-CSDN博客
不知道模型怎么部署,请看教程:SGLang安装教程,部署你的大模型,性能比vllm好,实现张量并行,数据并行,加快推理速度,亲测效果好。-CSDN博客
模型版本 | CPU | 内存 | 显卡 | 存储 |
---|---|---|---|---|
DeepSeek-R1-1.5B | 任意四核处理器 | 8GB | 无需 GPU | 12GB |
DeepSeek-R1-7B | Ryzen 7 或更高 | 16GB | RTX 3060 (12GB) 或更高 | 80GB |
DeepSeek-R1-14B | i9-13900K 或更高 | 32GB | RTX 4090 (24GB) 或更高 | 200GB |
DeepSeek-R1-32B | Xeon 8核+128GB 或更高 | 64GB | 2-4张 A100 80GB 或更高 | 320GB |
DeepSeek-R1-70B | Xeon 8核+128GB 或更高 | 128GB | 8+张 A100/H100,显存 ≥80GB/卡 | 500GB+ |
版本 | 参数 | 特点 | 适用场景 | 硬件需求 |
---|---|---|---|---|
deepseek-r1:1.5b | 1.5B | 轻量级模型,运行速度快,性能有限。 | 低配硬件,简单任务 | 低配硬件 |
deepseek-r1:7b | 7B | 平衡型模型,性能较好,硬件需求适中。 | 多数常见任务 | 中等硬件 |
deepseek-r1:8b | 8B | 性能略强于 7B 模型,适合更高精度需求。 | 需要更高精度的任务 | 中等硬件 |
deepseek-r1:14b | 14B | 高性能模型,擅长复杂任务(如数学推理、代码生成)。 | 复杂任务(数学推理、代码生成等) | 高硬件需求 |
deepseek-r1:32b | 32B | 专业级模型,性能强大,适合高精度任务。 | 研究、高精度任务 | 高端硬件 |
deepseek-r1:70b | 70B | 顶级模型,性能最强,适合大规模计算和高复杂度任务。 | 大规模计算、高复杂度任务 | 专业级硬件 |
deepseek-r1:671b | 671B | 超大规模模型,性能卓越,推理速度快,适合极高精度需求。 | 前沿科学研究、复杂商业决策分析 | 极高硬件需求 |
1、小型模型
DeepSeek-R1-1.5B
CPU:最低 4 核
内存:8GB+
硬盘:256GB+(模型文件约 1.5-2GB)
显卡:非必需(纯 CPU 推理)。
适用场景:本地测试,自己电脑上可以配合 Ollama 轻松跑起来。
预计费用:2000~5000,这个版本普通人是能够得着的。
2. 中型模型
DeepSeek-R1-7B
CPU:8 核+
内存:16GB+
硬盘:256GB+(模型文件约 4-5GB)
显卡:推荐 8GB+ 显存(如 RTX 3070/4060)。
适用场景:本地开发和测试,可以处理一些中等复杂度的自然语言处理任务,比如文本摘要、翻译、轻量级多轮对话系统等。
预计费用:5000~10000,这个版本普通人也行。
DeepSeek-R1-8B
CPU:8 核+
内存:16GB+
硬盘:256GB+(模型文件约 4-5GB)
显卡:推荐 8GB+ 显存(如 RTX 3070/4060)。
适用场景:适合需要更高精度的轻量级任务,比如代码生成、逻辑推理等。
预计费用:5000~10000,这个版本咬咬牙也能上。
3. 大型模型
DeepSeek-R1-14B
CPU:12 核+
内存:32GB+
硬盘:256GB+
显卡:16GB+ 显存(如 RTX 4090 或 A5000)。
适用场景:适合企业级复杂任务,比如长文本理解与生成。
预计费用:20000~30000,这个对 3000 工资的小编来说还是算了。
DeepSeek-R1-32B
CPU:16 核+
内存:64GB+
硬盘:256GB+
显卡:24GB+ 显存(如 A100 40GB 或双卡 RTX 3090)。
适用场景:适合高精度专业领域任务,比如多模态任务预处理。这些任务对硬件要求非常高,需要高端的 CPU 和显卡,适合预算充足的企业或研究机构使用。
预计费用:40000~100000,算了。
4. 超大型模型
DeepSeek-R1-70B
CPU:32 核+
内存:128GB+
硬盘:256GB+
显卡:多卡并行(如 2x A100 80GB 或 4x RTX 4090)。
适用场景:适合科研机构或大型企业进行高复杂度生成任务。
预计费用:400000+,这是老板考虑的,不该我去考虑。
DeepSeek-R1-671B
CPU:64 核+
内存:512GB+
硬盘:512GB+
显卡:多节点分布式训练(如 8x A100/H100)。
适用场景:适合超大规模 AI 研究或通用人工智能(AGI)探索。