Redis7.0八种数据结构底层原理

news2025/2/15 11:30:14

导读

本文介绍redis应用数据结构与物理存储结构,共八种应用数据结构和
在这里插入图片描述

一. 内部数据结构

1. sds

sds是redis自己设计的字符串结构有以下特点:

  • jemalloc内存管理
  • 预分配冗余空间
  • 二进制安全(c原生使用\0作为结尾标识,所以无法直接存储\0)
  • 动态计数类型(根据字符串长度动态选择结构)
  • 功能强大

最为重点是引入了jemalloc,十分高效且能有效在redis的场景中减少内存碎片;
在这里插入图片描述
不同的字符串长度使用的结构不同最高可以节省18字节;

2. dict

redis的hash表实现
核心结构
核心结构由两个类型为dictEntry的数组组成,使用开链法的数据结构;

扩容

采用渐进式扩容数组,但数组需要扩容或缩容时开辟数组2,使用数组2存储新数组,在后续操作命中数组1的bucket时,只复制命中的bucket数据到数组2;
同时主线程在每次循环任务时会分配1毫秒协助尚未复制的;
扩容完成
完成所有数组1复制到数组2后,使用2替代1,并空出2为下一次扩容准备

总结点
  • 扩容阈值更低,链条均长不过4
  • 渐进式rehash,响应时间更加平滑

3. listpack(紧凑集合,双向链表)

在这里插入图片描述
紧凑类型集合,在申请的一块连续的内存(byte[])中存储一个集合数据结构,使用少量的内存但支持所需的集合操作

实现原理

主数据结构上分两快:

  • 记录数据使用总长度,因为连续的内存快可能有一部分还未使用
  • Body存储实际数据

Body内存储多个条目(实际数据),每个条目头尾都会记录条目长度,从而实现快速的头尾遍历。此外条目头部会分配一个字节记录条目的类型,这个类型可以减少记录长度的使用内存(小数据量的条目可能8位的int就够记录了,而长的可能需要32位int才够记录)。

核心操作时间复杂度:

操作时间复杂度对应指令
头插O(1)LPUSH
尾插O(1)RPUSH
头取O(1)LPOP
尾取O(1)RPOP

缺点

因为每个条目的头尾都记录了长度,所以从头和尾顺序操作很快,但涉及集合中间数据数据时间复杂度就会增加:

操作时间复杂度对应指令
范围取O(n)LRANGE
指定取O(n)LINDEX

同时因为基于连续内存快(byte[]数组),涉及到LINSERT(指定下标插入)就需要重新对内存块的数据做移动操作;

4. quicklist

listpack明显的一个问题是数据量大了对于O(n)时间复杂度指令性能变差,这对于单线程处理指令模型很容易成为性能短板,quicklist为解决这点而设计。
在这里插入图片描述
通过拆分多个小块的listpack(从而可以快速定位范围),quicklist使用双向链表管理这些小块的listpack,同时quicklist会根据阈值对listpack进行lzf算法压缩,进一步缩减内存占用提升效率

缺点

额外的管理结构内存quicklist(40 byte)、quicklistNode(32 byte),但在效率的提升面前不值一提

5. intset

这是一个只存储int类型(最大支持64位int)的唯一值集合,头部存储值的编码类型与长度其他位置都存储实际数据,因为数组内的数据大小都严格是头部设置的编码类型所以没有分隔符,同时从小到大存储,所以可以用二分快速查找值。
在这里插入图片描述
从新增值的角度切入有一下核心点:

  • 每新增一个值都要开辟新内存
  • 如果当前编码类型不够存储新值,那将需要重新对所有数据变更数据结构(INT16->INT32)
  • 修改头部数据:当前数据长度

从这点可以发现一些问题,每次添加值都需要扩容内存,为了保持步长一样所有数据都要保持一样的编码类型导致浪费内存;

优点也明显,内存占用少、查询效率O(log n)

核心操作时间复杂度:

操作时间复杂度对应指令
查询值O(log n)SISMEMBER
添加值O(n)SADD

6. skiplist

跳表是zset的核心数据结构,有序且读写操作效率保持O(logN),从贴出来的代码能出来它不是一个存储在连续内存快的实现(对比listpack和intset);

/* ZSET使用特殊版本的跳表 */
typedef struct zskiplistNode {
    sds ele;//实际值
    double score;//分数
    struct zskiplistNode *backward;//最上层的前一位(例如node3的最上层前一位是node1)
    struct zskiplistLevel {
        struct zskiplistNode *forward;//向后的node(例如层级1的node3:向后是node4->node5->node6)
        unsigned long span;
    } level[];//存储这个node所在的所有层级(例如节点3那么这个level将只有两个槽位,别存储level1和level2)
} zskiplistNode;

typedef struct zskiplist {
    struct zskiplistNode *header, *tail;//头与尾(最大或最小值)
    unsigned long length;  //存储的数据量
    int level;//跳表深度(也就是索引层数量)
} zskiplist;

typedef struct zset {
    dict *dict;	//<值:Score>(为了快速检查是否唯一)
    zskiplist *zsl;//跳表
} zset;

在这里插入图片描述
zset是有序&唯一的数据结构,这两特性决定了需要频繁排序和确认唯一,对于保持有序重点对比的是红黑树(也是java中TreeMap的内部实现方法):

操作跳表 (QPS)红黑树 (QPS)优势
插入 10w 元素125,00098,000+27.5%
范围查询 1000 元素45,00032,000+40.6%
查询 1 元素110,000125,000-13%
内存占用 (10w 元素)45MB52MB-13.5%
代码实现量200行500+行150%

红黑树的树深和跳表的level都可以理解成一个组合的索引,同样是定位"4"但红黑树的二叉树实现明显是可以更快的(红黑树从头到尾都是二分查找)因为红黑树的每一个层级(索引)分布更加均匀,而跳表得益于每个动态随机的层级分布(每个level)层级节点更少从而跳表使用更少的内存
在这里插入图片描述
在Redis中的跳表实现,已节点3为例: 每个节点都会存储自己在每个level的情况,同时单向链表链接向后的节点 ,有了这些信息就可以从最高的level往下找到目标;
在这里插入图片描述
以上介绍可以总结以下几点:

  • 排序快
  • 内存占用少
  • 范围取值性能好
  • 查询效率O(logN)
  • 代码相比简单

而在redis中的跳表还使用了一个dict<值,Scroe>哈希表优化实现唯一值检查和快速过滤无效操作,因为查找某个值不是跳表的强项(相比红黑树);

7. HyperLogLog(Dense稠密存储&SPARSE稀疏)

理解数据结构前需要先理解HyperLogLog算法原理(请先看下方的[应用数据结构->HyperLogLog])

struct hllhdr {
	char magic[4]; /* 魔法值由于识别结构体"HYLL" */
	uint8_t encoding; /* 编码:HLL_DENSE(稠密) or HLL_SPARSE(稀疏). */
	uint8_t notused[3]; /* 预留字段,暂无使用 */
	uint8_t card[8]; /* 缓存统计结果 */
	uint8_t registers[]; /* 实际存储 */
}

registers[]存储的就是桶数据,以稠密存储为例,会一口气申请12KB,6位为一个桶一共16,384个桶:

12KB=12,288B=98,304bit
98,304÷6=16,384个桶

桶中记录最长的末尾连续0次数,6bit最高能记录64次,算法只使用hash的末50位所以6bit足够记录最大连续50位0(节省内存);
在这里插入图片描述

SPARSE稀疏存储

通过 稀疏存储结构(Sparse Encoding) 在数据量较小时大幅减少内存占用,其核心原理是将连续的零值桶压缩表示,并通过动态编码策略平衡内存与性能。稀疏存储在uint8_t registers[]的存储方式与稠密存储不同,更加节省内存;
不再是一下子申请12KB,而是2B;
初始化结果实例
在这里插入图片描述

稀疏存储的编码结构
Redis 的 HLL 稀疏存储使用 三元组(Triplet) 表示连续的桶状态,通过操作码(Opcode)标识块类型:

操作码二进制格式占用字节描述
XZERO01xxxxxx xxxxxxxx2B表示连续 16384 个桶的值为 0(最大覆盖范围,仅用于初始化)
ZERO00xxxxxx1B表示连续 1~64 个桶的值为 0,长度由低 6 位(xxxxxx)表示
VAL1vvvvvv11B表示 1 个桶的非零值,值由高 5 位(vvvvv)存储,低 1 位(l)固定为 1

只有槽位1001是3示例:
在这里插入图片描述
示例中使用XZERO表示0-1000的桶都是0,使用VAL表示第1001个桶是3,最后又使用XZERO表示剩余的15382个桶都是0;
不再一次性开辟所有桶的内存,一但超过阈值再转换为密集存储,从而在空间与时间上有较好的平衡:

性能与内存对比

指标稀疏编码(小基数)密集编码
内存占用300B ~ 3KB固定 12KB
PFADD 延迟较高(需遍历块)极低(直接位操作)
适用场景基数 < 10000基数 ≥ 10000 或高并发

Radix tree(基数树)

Redis 选择 Rax树(基数树,Radix Tree) 作为 Stream 类型数据的底层存储结构,是为了在 内存效率、范围查询性能 和 有序性维护 之间取得平衡

typedef struct rax {
    raxNode *head; //根节点
    uint64_t numele;//数据量
    uint64_t numnodes;//节点数量
    void *metadata[]; //元数据
} rax;

typedef struct raxNode {
    uint32_t iskey:1;
    uint32_t isnull:1; 
    uint32_t iscompr:1;
    uint32_t size:29;  
    //以上:节点标记位
    unsigned char data[]; //实际节点数据:存储listpack结构数据
} raxNode;

data内使用listpack存储节点数据,并不是常规的二叉树
在这里插入图片描述
追加到listpack:
若当前listpack未满(默认限制约 4096字节),直接追加新消息。
若已满,创建新的listpack,并在Rax树中插入新叶子节点。

二. 应用数据结构

0. 存储框架

Redis是个KV数据库,它的最外层是16,384个solt(也就是一致性hash的槽位),每个槽位中是实际存储dictkey:应用数据结构的数据(hash表);

当执行以下指令后:

LSET key1 index value
SET key2 value
HSET key10 field value

实际在redis中的存储结构会是:
在这里插入图片描述
16384个solt组成一致性hash环,每个sold都是一个db,db内部是Hash表,也就是RedisKV数据库的核心结构;

1. String

基于sds,没啥好说的

2. Hash

在这里插入图片描述
使用dict不难理解,本身Hash类型就是一个哈希表;
在小数据量使用listpack是为在空间与时间上做平衡,listpack使用两个entry为一组分别存储kv:
在这里插入图片描述

特性listpackdict(哈希表)
内存占用低(连续存储,无指针开销)高(指针、元数据、哈希表桶开销)
100个值内存占用2.2KB)12KB
查询效率O(n)(需遍历)O(1)(哈希直接定位)
插入/删除效率中等(需内存重排)高(直接操作节点,但扩容有抖动)
适用场景小数据(字段数少,值长度短)大数据(字段多,查询频繁)
自动转换阈值hash-max-listpack-entries(默认512)hash-max-listpack-value(默认64字节)超出阈值时自动转为 dict
内存碎片少(连续内存块)多(动态扩容、指针分散)

3. List

在这里插入图片描述

基于上文对listpack的介绍,它是一个紧凑(节省内存)、小数据量性能有保障(大数据量性能不好)的数据结构,为了应对大数据量使用quicklist分段listpack进行管理,但只有到达阈值才会从单个listpack升级到quicklist(也就是一开始List里面只有一个listpack),同时达到阈值也会降级为一个listpack。

4. Set

在这里插入图片描述

set两个核心操作: 值唯一、取差集并集交集;
值唯一实现内部使用的三种数据结构(intset、listpack、hasht),intset和dict都是可以轻松实现set属性(值唯一),listpack在插入前做查询检查后再插入也可以实现set属性,但listpack的查询效率是O(n)略显差劲,好再listpack升级到dict的阈值不高;
取差集并集交集这实现基于遍历筛选,没有很复杂的点(源码:t_set.c#sinterGenericCommand);

5. ZSET

zset是一个有序值唯一的集合,内部使用了listpack和skiplist;
在这里插入图片描述
以下文指令切入

127.0.0.1:6379> ZADD zsetKey 1 "apple" 2 "banana" 3 "orange"
(integer) 3

根据score(1、2、3)作为排序的优先级,也就是要存储值和对应的score;
其中listpack与上文介绍的数据存储上有些不同:
在这里插入图片描述
两个条目一组分别存储实际值与score,同时listpack也支持查询步长+1的跨越条目查询
同时listpack本身是无序的,但默认最多只会存储64条所以每次获取时才扫描顺序;

而超过64条后会转换为skiplist(跳表);

6. Bitmap

布隆过滤器,内部存储结构是基于sds申请的一大块内存char[],根据客户端给的槽位(bit)并标记1
在这里插入图片描述
Bitmap限制最大sds为512M,51210241024*8= 4,294,967,296位(即 42.9 亿个bit);

  SETBIT key 7 1 #第八位设置为1

以上指令在第8bit设置为1,Bitmap申请内存并非一口气申请最大512M,而且根据当前要设置的最大逐步申请新的sds;

bitmap实现并不复杂:

指令时间复杂度补充
SETBITO(1)
GETBITO(1)
BITCOUNTO(N)遍历
BITPOSO(N)扫描
BITFIELDO(N)扫描

7. HyperLogLog

HyperLogLog使用快速、高效的、统计近似基数,我们直接介绍核心原理:
在这里插入图片描述
以上是三组抛筛子游戏,规则是越晚抛出正面的人获胜,换个方向理解就是:连续抛出最多反的人获胜;在大量的实验后第N次抛出正的概率会根据N的增加概率越小,而根据概率我们可以计算出大概需要多少组才能得到第N次才是正:

第N次才是正概率平均抛出次数
第二次25%4
第四次6.25%16
第六次1.56%64

带入HyperLogLog,使用MurmurHash64A计算出"user1"的64位hash值,使用后50位模拟抛硬币游戏,即末尾连续的0代表反面,从而得到所需次数(比如末尾出现了5个0那我们定义为在此之前已经抛了64次,从而得到一个基数),而我们只需要记录最大的才是正的次数就可推测出本次游戏大概进行了多少组;

PFADD "key" "user1"

在这里插入图片描述
计算出的hash值是固定的,可以理解为每个值都只有一次拔高最大连续0的机会,从而变相的去重计数;
但有个问题如果只记录一个出现的最长的连续0那只会被一个hash值顶高,比如一开始出现一个值的hash末尾连续5个0那么就会一开始把次数拔高到64次;

所以使用hash的前14位计算槽位,14位最大表示数字16,384也就是会有16,384槽位。也就是理想状态下会记录16384组,最终统计这些槽位值会得到个更贴近的基数(使用调和平均数算法计算平均数)

图解网站:http://content.research.neustar.biz/blog/hll.html

以上算法基于<伯努利试验>

而存储结构采用了两种:
在这里插入图片描述

8. Geospatial

Geospatial可以快速获取给定经纬度附近的对象, 通过对经纬度进行Geohash编码将二维数据转为一维数据:
参考文档:https://cloud.tencent.com/developer/article/1949540

Geohash计算出的hash可以排序,也就是相邻的两个经纬度转换出的hash在数值上也相邻,这个hash可以作为ZSET数据格式的Scroe,ZSET底层是跳表,跳表对范围取值时间复杂度较低;

9. Stream

Streams 是一种仅追加的数据结构。基本写入命令(称为 XADD)将新条目追加到指定的流中。
默认会使用-生成每条消息的id,生成的id向前递增,对实际的存储结构有很大的帮助(因为前置数字最大限度保持一致,使用基数树作为存储结构时能够减少内存与基于时间范围查询)

性能:

Processed between 0 and 1 ms -> 74.11%
Processed between 1 and 2 ms -> 25.80%
Processed between 2 and 3 ms -> 0.06%
Processed between 3 and 4 ms -> 0.01%
Processed between 4 and 5 ms -> 0.02%

99.9% 的请求的延迟为 <= 2 毫秒,异常值仍然非常接近平均值。

数据量数据大小占用内存
100w1KB1.1G
100W250B285.4M

实测插入100w条仅需30秒,qps3.3w

到此可以总结出redis stream对比kafka:

维度rediskafka
数量级别GPB
高可用有可能丢失可以做到不丢失
功能基础丰富
单点stream只单节点多分区
qps5w左右(受限只能在一台机器上)百万级别

Stream 的核心需求

  • 有序性:Stream 消息按时间顺序存储(ID 格式为 <时间戳>-<序列号>),需支持高效范围查询(如 XRANGE)。
  • 内存压缩:消息 ID 具有大量公共前缀(相同时间戳),适合前缀树压缩。
  • 动态扩展:Stream 可能频繁插入新消息,需低开销的动态结构调整。

采用了基数树作为存储结构
在这里插入图片描述
Stream的默认ID生成方案具有大量前缀(时间戳)、有序向前递进,stream只需删除末尾(没有随机删除的需求),只需摘除节点即可。
同时时间戳前缀可以实现基于时间定位与范围取值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2298568.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

细说STM32F407单片机RTC的备份寄存器原理及使用方法

目录 一、备份寄存器的功能 二、示例功能 三、项目设置 1、晶振、DEBUG、CodeGenerator、USART6 2、RTC 3、NVIC 4、GPIO 及KEYLED 四、软件设计 1、main.h 2、main.c 3、rtc.c 4、keyled.c、keyled.h 五、运行调试 本实例旨在介绍备份寄存器的作用。本实例继续使…

spring 学习 (注解)

目录 前言 常用的注解 须知 1 Conponent注解 demo&#xff08;案例&#xff09; 2 ControllerServiceRepository demo(案例&#xff09; 3 ScopeLazyPostConstructPreDestroy demo(案例&#xff09; 4 ValueAutowiredQualifierResource demo(案例&#xff09; 5 Co…

【Linux】多线程 -> 从线程概念到线程控制

线程概念 在一个程序里的一个执行路线就叫做线程&#xff08;thread&#xff09;。更准确的定义是&#xff1a;线程是“一个进程内部的控制序列”。一切进程至少都有一个执行线程。线程在进程内部运行&#xff0c;本质是在进程地址空间内运行。在Linux系统中&#xff0c;在CPU眼…

mapbox 从入门到精通 - 目录

&#x1f468;‍⚕️ 主页&#xff1a; gis分享者 &#x1f468;‍⚕️ 感谢各位大佬 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍⚕️ 收录于专栏&#xff1a;mapbox 从入门到精通 文章目录 一、&#x1f340;总目录1.1 ☘️ mapbox基础1.2 ☘️…

深度学习在半导体领域的创新点研究

摘要&#xff1a;本论文聚焦于深度学习在半导体领域的创新应用&#xff0c;全面剖析其为半导体产业带来的变革与机遇。通过深入探究深度学习在半导体设计、制造、测试及质量管控等多方面的创新实践&#xff0c;揭示其对提升半导体性能、降低成本及增强产业竞争力的关键作用。同…

谈谈云计算、DeepSeek和哪吒

我不会硬蹭热点&#xff0c;去分析自己不擅长的跨专业内容&#xff0c;本文谈DeepSeek和哪吒&#xff0c;都是以这两个热点为引子&#xff0c;最终仍然在分析的云计算。 这只是个散文随笔&#xff0c;没有严谨的上下游关联关系&#xff0c;想到哪里就写到哪里。 “人心中的成见…

分享 UniApp 实现列表长按删除功能

在移动应用开发中&#xff0c;列表是常见的展示形式&#xff0c;而长按删除列表项也是一个实用且常见的交互功能。今天就来和大家分享如何在 UniApp 中实现列表的长按删除功能&#xff0c;同时附上详细的代码。 效果预览 通过代码实现后&#xff0c;我们将得到一个带有红色边…

k8s集群搭建参考(by lqw)

文章目录 声明配置yum源安装docker安装 kubeadm&#xff0c;kubelet 和 kubectl部署主节点其他节点加入集群安装网络插件 声明 由于看了几个k8s的教程&#xff0c;都存在各种问题&#xff0c;自己搭建的时候&#xff0c;踩了不少坑&#xff0c;最后还是靠百度csdnchatGPT才搭建…

「前端面试宝典」 - 猿媛之家(21.06)

模拟面试是提高个人沟通技巧的最有效方式 请记住&#xff1a;思维的深度&#xff0c;决定你人生的高度。胸怀的广度&#xff0c;决定你事业的长度。 面试官关注的重点不是题目的答案&#xff0c;而是求职者解题的思路与方法. 以排序算法为例&#xff1a;时间利用是否高效&#…

C++算法竞赛基础语法-9

快速排序是一种高效的排序算法&#xff0c;由C. A. R. Hoare在1960年提出&#xff0c;基本思想是分治法&#xff08;Divide and Conquer&#xff09;策略&#xff0c;通过递归将一个大问题分解为若干个较小的子问题&#xff0c;然后合并这些子问题的解来解决原始问题 快速排序…

Mac安装JD-GUI

Mac安装反编译工具步骤如下&#xff1a; 打开官网https://java-decompiler.github.io/ 选择下载mac的安装包解压下载好的压缩包&#xff0c;点击JD-GUI安装 有可能会遇到如下错误。请先检查是否安装JDK&#xff0c;通过java -version命令查看是否是1.8版本的jdk如果jdk没问题&…

Nginx--日志(介绍、配置、日志轮转)

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 一、Nginx日志介绍 nginx 有一个非常灵活的日志记录模式&#xff0c;每个级别的配置可以有各自独立的访问日志, 所需日志模块 ngx_http_log_module 的…

QML 快捷键与Shortcut的使用

一、效果展示 二、源码分享 import QtQuick import QtQuick.Controls import Qt.labs.qmlmodels import QtQuick.Controls.Basic import QtQuick.Layouts import QtQuick.Effects import Qt.labs.platformApplicationWindow {id:rootwidth: 1000height: 730visible: truetitle…

制造业物联网的十大用例

预计到 2026 年&#xff0c;物联网制造市场价值将达到 4000 亿美元。实时收集和分析来自联网物联网设备与传感器的数据&#xff0c;这一能力为制造商提供了对生产流程前所未有的深入洞察。物联网&#xff08;IoT&#xff09;有潜力彻底改变制造业&#xff0c;使工厂能够更高效地…

考研操作系统----操作系统的概念定义功能和目标(仅仅作为王道哔站课程讲义作用)

目录 操作系统的概念定义功能和目标 操作系统的四个特征 操作系统的分类 ​编辑 操作系统的运行机制 系统调用 操作系统体系结构 操作系统引导 虚拟机 操作系统的概念定义功能和目标 什么是操作系统&#xff1a; 操作系统是指控制和管理整个计算机系统的软硬件资源&…

[极客大挑战 2019]Havefun1

[极客大挑战 2019]Havefun1 代码审计发现 根据代码逻辑&#xff0c;要求传入’cat’参数&#xff0c;值为’dog’时执行if的操作&#xff0c;所以构造参数: ?catdog获得flag

MG协议转换器:破解暖通设备通讯壁垒的智能钥匙

在智能化楼宇管理中&#xff0c;暖通空调系统&#xff08;HVAC&#xff09;的高效运行直接影响建筑的能耗控制与用户体验。然而&#xff0c;暖通设备品牌众多、协议不统一的问题长期困扰着运维人员&#xff1a;不同厂商的冷水机组、风机盘管、传感器等设备因采用Modbus、BACnet…

【赵渝强老师】Spark的容错机制:检查点

由于Spark的计算是在内存中完成&#xff0c;因此任务执行的生命周期lineage&#xff08;血统&#xff09;越长&#xff0c;执行出错的概念就会越大。Spark通过检查点Checkpoint的方式&#xff0c;将RDD的状态写入磁盘进行持久化的保存从而支持容错。如果在检查点之后有节点出现…

算法兵法全略(译文)

目录 始计篇 谋攻篇 军形篇 兵势篇 虚实篇 军争篇 九变篇 行军篇 地形篇 九地篇 火攻篇 用间篇 始计篇 算法&#xff0c;在当今时代&#xff0c;犹如国家关键的战略武器&#xff0c;也是处理各类事务的核心枢纽。算法的世界神秘且变化万千&#xff0c;不够贤能聪慧…

react传递函数与回调函数原理

为什么 React 允许直接传递函数&#xff1f; 回调函数核心逻辑 例子&#xff1a;父组件控制 Modal 的显示与隐藏 // 父组件 (ParentComponent.tsx) import React, { useState } from react; import { Modal, Button } from antd; import ModalContent from ./ModalContent;co…