【论文笔记】Are Self-Attentions Effective for Time Series Forecasting? (NeurIPS 2024)

news2025/2/16 5:02:25

在这里插入图片描述

官方代码https://github.com/dongbeank/CATS


Abstract

时间序列预测在多领域极为关键,Transformer 虽推进了该领域发展,但有效性尚存争议,有研究表明简单线性模型有时表现更优。本文聚焦于自注意力机制在时间序列预测中的作用,提出仅用交叉注意力的 CATS 架构。它摒弃自注意力,利用交叉注意力并设置未来视野依赖参数为查询及增强参数共享,提升了长期预测精度,还减少了参数和内存使用。多数据集实验显示,CATS 模型均方误差最低且参数更少。https://github.com/dongbeank/CATS


Introduction

  • Background:时间序列预测在金融、气象、交通等诸多领域中是关键任务,其结果对决策制定有重要影响。Transformer 架构在自然语言处理等方面取得巨大成功后,被广泛应用于时间序列预测,但实际效果参差不齐,引发了对其内部结构尤其是自注意力机制在该任务中适用性的思考。
  • Motivation:越来越多的研究显示,在某些时间序列预测场景下,简单的线性模型能达到甚至超越复杂的基于 Transformer 的模型的性能。这促使作者深入探究自注意力机制在时间序列预测中的真实价值,试图寻找更高效的架构来提升预测准确性和效率。
  • Challenges
    • 计算复杂度问题:在传统的 Transformer 架构应用于时间序列预测时,自注意力机制的计算复杂度随着序列长度的增加呈平方增长。当处理大规模时间序列数据时,这会导致训练时间大幅延长,对计算资源的需求也急剧增加,使得模型在实际应用中的可行性受到挑战。
    • 过拟合风险:Transformer 模型通常包含大量的参数,在时间序列数据有限的情况下,容易出现过拟合现象。模型可能会过度学习训练数据中的噪声和局部特征,而无法很好地泛化到未知的未来数据,从而影响预测的准确性和可靠性。
    • 自注意力机制对于时间序列预测是否有效?
  • Contributions
    • 架构创新:提出了 Cross-Attention-only Time Series transformer (CATS) 架构,为时间序列预测提供了一种全新的思路。通过去除自注意力机制,采用交叉注意力机制并结合独特的参数设置,有效解决了传统 Transformer 在时间序列预测中面临的部分难题
    • 实验验证:在多个不同类型和领域的数据集上进行了广泛而深入的实验,全面验证了 CATS 模型的有效性。通过与现有的主流时间序列预测模型进行对比,证明了 CATS 模型在降低均方误差、减少参数数量和内存使用方面具有显著优势,为后续的研究和实际应用提供了有力的实证支持。

Method

在这里插入图片描述

在时间序列预测领域,传统Transformer架构中的自注意力机制存在诸多问题,如时间信息丢失、计算复杂度高等。为解决这些问题,作者提出了仅交叉注意力时间序列Transformer(CATS)架构,其主要由以下三个关键部分构成。

在这里插入图片描述

将未来作为查询的交叉注意力机制

在时间序列预测中,预测通常针对特定的未来时间范围。交叉注意力机制与自注意力机制相似,涉及键(key)、查询(query)和值(value)三个要素,但不同之处在于查询来自与键和值不同的来源。在我们的CATS架构中,核心在于将未来时间范围视为查询。

具体实现上,我们把与预测范围相关的参数设定为可学习的查询。以图4为例,我们先针对特定的预测范围创建相应参数。对每个这样的虚拟化参数,分配固定数量的参数来代表对应的预测范围,使其成为可学习的查询。例如, q i q_{i} qi 就是在 L + i L + i L+i 时刻与预测范围相关的一个查询。当进行分块操作时,这些查询会被独立处理。每个可学习查询 q ∈ R P q \in \mathbb{R}^{P} qRP 先被输入到嵌入层,之后将经过嵌入的输入时间序列分块作为键和值,输入到多头注意力层。通过这种方式,模型能够利用交叉注意力机制,从过去的时间序列数据(键和值)中,精准地提取与未来特定时间点(查询)相关的信息,有效避免了自注意力机制中因排列不变性和反序特性导致的时间信息丢失问题,更好地捕捉时间序列中的动态变化和依赖关系 。

跨预测范围的参数共享

在CATS架构中,参数共享策略是提升模型效率和性能的关键因素之一。传统的Transformer架构在处理不同预测范围时,往往为每个预测步骤单独设置大量参数,这不仅增加了模型的复杂度和训练成本,还容易引发过拟合问题。

与之不同,我们的CATS模型通过在不同预测范围之间共享关键参数,极大地减少了参数总量。例如,在多头注意力机制中,用于计算注意力权重的部分参数在不同的预测时间步中是共享的。这种参数共享方式,使得模型在学习过程中能够更高效地利用数据,提高参数的使用效率,降低模型的过拟合风险。同时,减少的参数数量降低了模型的计算复杂度,使得模型在训练和推理过程中所需的内存和计算资源显著减少,提升了模型的运行速度和实际应用的可行性。这一策略使得CATS模型在处理不同长度和复杂度的时间序列数据时,能够以更简洁的结构和更低的资源消耗,实现准确的预测。

在这里插入图片描述

查询自适应掩码

查询自适应掩码是CATS架构中的另一个创新点,它主要用于优化交叉注意力机制的计算过程,提升模型的预测准确性。在时间序列预测中,不同的时间步和预测范围对于信息的需求和依赖程度各不相同。查询自适应掩码能够根据每个查询(即未来的每个时间点)的特点,动态地调整模型在计算注意力权重时对输入数据(键和值)的关注程度。

具体而言,掩码会根据查询所代表的未来时间点与当前时间的距离、时间序列数据的局部和全局趋势等因素,对输入数据中的某些部分进行选择性的屏蔽或增强。例如,当预测较近的未来时间点时,模型可能更关注近期的时间序列数据,掩码会增强对这些数据的注意力权重;而当预测较远的未来时间点时,掩码会引导模型综合考虑更长期的历史数据和趋势信息。通过这种方式,查询自适应掩码帮助模型更加智能地聚焦于与每个预测目标最相关的信息,避免无效信息的干扰,从而提高预测的准确性和稳定性。同时,掩码的应用还可以减少不必要的计算,进一步提升模型的计算效率。


Results

长时预测

模型 CATS 在多个数据集的多元长期预测任务中展现出卓越性能。在交通(Traffic)数据集上,对于所有预测范围,CATS 始终能实现最低的均方误差(MSE)和平均绝对误差(MAE),超越了所有其他模型。对于天气(Weather)、电力(Electricity)和 ETT 数据集,CATS 表现出极具竞争力的性能,在大多数预测范围上取得了最佳结果。这表明 CATS 有效地捕捉了不同时间序列数据中的潜在模式,凸显了其处理复杂时间依赖关系的能力。

在这里插入图片描述

在这里插入图片描述

短时预测

在这里插入图片描述

交叉注意力vs自注意力

在这里插入图片描述


Conclusion

  • 本研究通过理论分析和实验验证,表明在时间序列预测领域,传统 Transformer 模型中的自注意力机制并非是必不可少的。CATS 架构通过巧妙地运用交叉注意力机制和独特的参数设置,成功地在提升预测精度的同时降低了资源消耗。
  • 未来的研究可以基于 CATS 架构进一步探索优化方向,如进一步改进交叉注意力机制的细节、探索更有效的参数共享策略、结合其他先进的机器学习技术等。同时,可以将 CATS 模型拓展到更多的应用领域,如工业生产过程中的质量控制、环境监测中的数据预测等,以推动时间序列预测技术的不断发展和创新。

Appendix

补充结果


创作不易,麻烦点点赞和关注咯!

学术会议

  • 如有意愿参会或投稿,可以获取邀请码,享受参会、投稿优惠,优先审核
  • 想要了解更多国内主办的覆盖学科最全最广的学术会议,请前往【所有会议官网】:
    学术会议官网www.ais.cn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2298136.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

瑞芯微开发板/主板Android调试串口配置为普通串口方法 深圳触觉智能科技分享

本文介绍瑞芯微开发板/主板Android调试串口配置为普通串口方法,不同板型找到对应文件修改,修改的方法相通。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联…

Redis 数据类型 Hash 哈希

在 Redis 中,哈希类型是指值本⾝⼜是⼀个键值对结构,形如 key "key",value { { field1, value1 }, ..., {fieldN, valueN } },Redis String 和 Hash 类型⼆者的关系可以⽤下图来表⽰。 Hash 数据类型的特点 键值对集合…

IntelliJ IDEA 2024.1.4版无Tomcat配置

IntelliJ IDEA 2024.1.4 (Ultimate Edition) 安装完成后,调试项目发现找不到Tomcat服务: 按照常规操作添加,发现服务插件中没有Tomcat。。。 解决方法 1、找到IDE设置窗口 2、点击Plugins按钮,进入插件窗口,搜索T…

连锁收银系统的核心架构与技术选型

在连锁门店的日常运营里,连锁收银系统扮演着极为重要的角色,它不仅承担着交易结算的基础任务,还关联着库存管理、会员服务、数据分析等多个关键环节。一套设计精良的核心架构与合理的技术选型,是保障收银系统高效、稳定运行的基础…

CSS 小技巧 —— CSS 实现 Tooltip 功能-鼠标 hover 之后出现弹层

CSS 小技巧 —— CSS 实现 Tooltip 功能-鼠标 hover 之后出现弹层 1. 两个元素实现 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>纯 CSS 实现 Tooltip 功能-鼠标 hover 之后出现弹层</titl…

19.4.2 -19.4.4 新增、修改、删除数据

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 需要北风数据库的请留言自己的信箱。 19.4.2 新增数据 数据库数据的新增、修改和删除不同于查询&#xff0c;查询需要返回一个DbD…

haproxy详解笔记

一、概述 HAProxy&#xff08;High Availability Proxy&#xff09;是一款开源的高性能 TCP/HTTP 负载均衡器和代理服务器&#xff0c;用于将大量并发连接分发到多个服务器上&#xff0c;从而提高系统的可用性和负载能力。它支持多种负载均衡算法&#xff0c;能够根据服务器的…

【STM32】通过L496的HAL库Flash建立FatFS文件系统(CubeMX自动配置R0.12C版本)

【STM32】通过L496的HAL库Flash建立FatFS文件系统&#xff08;CubeMX自动配置R0.12C版本&#xff09; 文章目录 FlashFlash地址写Flash地址读 FatFS文件系统配置FatFS移植驱动函数时间戳函数 文件操作函数工作区缓存文件挂载和格式化测试文件读写测试其他文件操作函数 测试附录…

传感器篇(一)——深度相机

目录 一 概要 二 原理 三 对比 四 产品 五 结论 一 概要 深度相机是一种能够获取物体深度信息的设备&#xff0c;相较于普通相机只能记录物体的二维图像信息&#xff0c;深度相机可以感知物体与相机之间的距离&#xff0c;从而提供三维空间信息。在你正在阅读的报告中提到…

Qt 控件整理 —— 按钮类

一、PushButton 1. 介绍 在Qt中最常见的就是按钮&#xff0c;它的继承关系如下&#xff1a; 2. 常用属性 3. 例子 我们之前写过一个例子&#xff0c;根据上下左右的按钮去操控一个按钮&#xff0c;当时只是做了一些比较粗糙的去演示信号和槽是这么连接的&#xff0c;这次我们…

校园网绕过认证上网很简单

校园网绕过认证就是不用通过校园WiFi的WEB页面登录&#xff0c;这个WEB登录页面就是认证页面. 所谓绕过认证&#xff0c;就是不通过校园WiFi WEB登录页面直接上网&#xff0c;校园WiFi没有密码&#xff0c;直接就能连接上&#xff0c;我们连上这个WiFi的时候&#xff0c;它会给…

WPS或word接入智能AI

DeepSeek接入WPS 配置WPS &#xff08;1&#xff09;下载 OfficeAl助手插件: 插件下载地址:https://www.office-ai.cn/。 安装插件后&#xff0c;打开WPS&#xff0c;菜单栏会新增"OfficeAl助手”选项卡。 如果没有出现&#xff0c; 左上找到文件菜单 -> 选项 ,在…

vue3:template中v-for循环遍历这个centrerTopdata,我希望自循环前面三个就可以了怎么写?

问&#xff1a; template中v-for循环遍历这个centrerTopdata&#xff0c;我希望自循环前面三个就可以了怎么写&#xff1f; 回答&#xff1a; 问&#xff1a; <div v-for"(item, index) in centrerTopdata.slice(0, 3)" :key"index"> div cl…

Java练习(20)

ps:练习来自力扣 给你一个 非空 整数数组 nums &#xff0c;除了某个元素只出现一次以外&#xff0c;其余每个元素均出现两次。找出那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法来解决此问题&#xff0c;且该算法只使用常量额外空间。 class Solution {pu…

MySQL | MySQL安装教程

MySQL | MySQL安装教程(压缩包&#xff08;ZIP&#xff09;安装-详细版) &#x1fa84;个人博客&#xff1a;https://vite.xingji.fun MySQL概述 MySQL是一个关系型数据库管理系统&#xff0c;由瑞典MySQL AB公司开发&#xff0c;MySQL AB公司被Sun公司收购&#xff0c;Sun公…

【SpringBoot3.x+】slf4j-log4j12依赖引入打印日志报错的两种解决方法

最开始引入了1.7.5版本的slf4j-log4j依赖包&#xff0c;但是控制台不报错也不显示日志 在https://mvnrepository.com/找到最新的2.0.16版本之后出现报错&#xff1a; 进入提示的slf4j网站中可以找到从2.0.0版本开始&#xff0c;slf4j-log4j已经被slf4j-reload4j取代&#xff1…

算法学习笔记之贪心算法

导引&#xff08;硕鼠的交易&#xff09; 硕鼠准备了M磅猫粮与看守仓库的猫交易奶酪。 仓库有N个房间&#xff0c;第i个房间有 J[i] 磅奶酪并需要 F[i] 磅猫粮交换&#xff0c;硕鼠可以按比例来交换&#xff0c;不必交换所有的奶酪 计算硕鼠最多能得到多少磅奶酪。 输入M和…

DeepSeek R1 “顿悟时刻”(Aha Moment) 的重现与探索:基于 GRPO 的倒计时游戏训练

本文翻译整合转载于&#xff1a; Deepseek R1 是如何训练的Mini-R1&#xff1a;重现 Deepseek R1 的 “顿悟时刻” RL 教程 Deepseek R1 的发布震惊了整个行业。为什么&#xff1f;DeepSeek-R1 是一个开放模型&#xff0c;在复杂推理任务中可与 OpenAI 的 o1 相媲美&#xff0c…

【JavaScript爬虫记录】记录一下使用JavaScript爬取m4s流视频过程(内含ffmpeg合并)

前言 前段时间发现了一个很喜欢的视频,可惜网站不让下载,简单看了一下视频是被切片成m4s格式的流文件,初步想法是将所有的流文件下载下来然后使用ffmpeg合并成一个完整的mp4,于是写了一段脚本来实现一下,电脑没有配python环境,所以使用JavaScript实现,合并功能需要安装ffmpeg,…

【线性代数】1行列式

1. 行列式的概念 行列式的符号表示: 行列式的计算结果:一个数 计算模型1:二阶行列式 二阶行列式: 三阶行列式: n阶行列式: 🍎计算行列式 计算模型2:上三角形行列式 上三角形行列式特征:主对角线下皆为0。 上三角形行列式: 化上三角形通用方法:主对角线下,…