部署 ollama + deepseek + open-webui 遇到的常见问题与解决建议

news2025/2/13 20:26:56

前言

前面部署了 ollama + deepseek + open-webui 这里聊聊部署过程中遇到的一些问题和解决方案。
包含 ollama 容器部署本地部署 中所遇问题和解决方案。

1. ollama proxy 网络代理问题

  • ollama 容器部署
    用不了 http https 的 proxy 代理(配全局都没用),官方没有说明,有人提问了但官方也没有解决方案,如果是内网部署还挺麻烦的

  • ollama 本地部署
    可以通过修改配置文件来配置代理。

    1. 打开 ollama.service 文件:
      sudo vim /etc/systemd/system/ollama.service
      
    2. [Service] 部分添加:
      Environment="OLLAMA_HOST=0.0.0.0"
      
    3. 保存并重启服务:
      sudo systemctl restart ollama
      sudo systemctl enable ollama
      

ollama 无论是本地还是容器部署,都无法直接使用使用全局配置的Proxy代理。

2. 无法直接启动模型

ollma 容器 无法直接启动模型
就好比,我无法直接执行下面命令:

docker run -it -v ollama:/root/.ollama -p 11434:11434 --name ollama2 ollama/ollama:0.5.8 ollama  run deepseek-r1:7b

会报错:Error: unknown command “ollama” for “ollama”
具体为啥可以看官方的 Dockerfile 文件

这样将导致不方便写 docker-compose.ymlk8s.yml ,无法让其一步执行完,还得再单独 ollama run 跑一次。
所以有能力的话,最好还是自己做一个 docker 镜像

3. 500 错误:下载模型时遇到问题

ollama run 在下载模型时出现 500 错误的情况。根据我的观察,这可能是因为 ollama 的官方网站或服务在某些时段遭遇了攻击或过载,导致无法正常处理请求。
虽然出现了 500 错误,但等待一段时间后问题会自动恢复。

4. 硬件配置对性能的影响

在使用 deepseek 时,我遇到了性能问题,特别是在硬件配置不达标的情况下,模型的表现会非常差。具体来说:

场景一:

  • 我尝试在一台 32 核 CPU、128GB 内存、机械硬盘的超融合集群的 虚拟机 上部署 8B 模型。结果,模型的表现极差,甚至出现了非常离谱的回答——比如问 7B 和 8B 模型的区别是什么,得到的答案居然是“这两台机器的硬件区别”,完全是乱来。

  • 然后,在一台小米笔记本上部署测试,笔记本配置为 i5-7200U(4核),8GB 内存,SSD 硬盘。虽然这台笔记本的硬件配置远不如前述虚拟机,但 7B 模型 在这台机器上能正经回答关于 7B 和 8B 模型区别 这个问题,相比下效果好很多。

官方建议的硬件配置真的不容忽视,特别是对于 deepseek 这类计算量较大的模型。官方推荐的硬件配置和部署方案如果达不到,精度和准确度都会大打折扣。特别是硬盘方面,SSD 的作用显著,性能差距非常明显。

场景二:

在同一台超微服务器上,用两张不同显卡跑了不同大小的 deepseek-r1 模型,得出以下记录:

显卡模型环境速度
Nvidia 10507BCPU
Nvidia 2080 Ti7BGPU
Nvidia 2080 Ti8BGPU
Nvidia 2080 Ti32BCPU

环境 部分,是模型自动跑的,通过 topnvidia-smi 等命令查看。

在我使用 1050 显卡 时,7B 模型 未能利用显卡,而是直接使用了 CPU。这可能是因为 ollama 对不同显卡的支持存在兼容性问题,或者是显卡的性能不足以满足模型的需求。而在 2080Ti 上,7B 和 8B 模型 能正常使用显卡,而 32B 模型 则回退到 CPU。这是由于 ollama 的资源调度机制,可能会基于显卡的内存、架构和驱动支持来决定是否使用 GPU。不同的硬件平台会影响其利用 GPU 的优先级。

另外,当使用 CPU 时,由于缺乏显卡的并行处理能力,处理时间会大幅增加,因此 CPU 跑 7B 模型 会非常慢,尤其在大规模推理时,处理速度可能只有 GPU 的几分之一。

5. ollama 启动与 open-webui 调用速度差异

在测试过程中,我发现 直接使用 ollama 启动并与模型对话 的速度比通过 open-webui 调用 API 的速度要快得多。速度差距非常明显,直接启动 ollama 的响应时间更短,几乎可以立刻得到回复,而通过 open-webui 调用 API 时,响应时间则明显较慢。

至于为什么会有这种差异,我猜测是由于 open-webui 在前端和后端之间有额外的通信开销和数据处理,而直接启动 ollama 可以避免这些额外的延迟,直接与模型进行交互。但具体的原因可能还需要更深入的分析,涉及到 API 调用、网络请求等多个因素。

6. 网络配置:开放端口访问

默认情况下,ollama 服务只绑定到 127.0.0.1 地址,这意味着只能在本机访问。如果希望其他机器也能访问服务,可以修改配置。

修改配置方法

  1. 打开 ollama.service 文件:
    sudo vim /etc/systemd/system/ollama.service
    
  2. [Service] 部分添加:
    Environment="OLLAMA_HOST=0.0.0.0"
    
  3. 保存并重启服务:
    sudo systemctl restart ollama
    sudo systemctl enable ollama
    

这样,ollama 就会监听所有 IP 地址,允许其他机器访问。

临时配置方式

你还可以通过设置环境变量来临时修改绑定地址:

export OLLAMA_HOST=0.0.0.0
ollama serve

但是需要注意,使用这种方式时,一旦关闭终端,服务也会停止。如果需要后台运行,可以使用 nohup 或者将其作为系统服务来管理。

7. 内存不足导致的性能问题

由于笔记本(我前面使用笔记本)的内存限制,1.5B 模型 + open-webui 的组合在使用过程中非常慢,尤其是在内存不足时,体验非常差。我曾在笔记本上运行 1.5B 模型,问一个简单的问题竟然等了 5 分钟,连续提问之后,甚至出现了 500 错误,导致 open-webui 服务挂掉(ollama 没挂)。

因为 open-webui 作为前端容器,它不仅需要处理用户的请求,还需要通过 API 与后端模型容器交互。这会导致以下几个因素:

  • API 调用的额外开销:每次用户请求都需要通过网络与后端容器进行通信。如果系统内存不足,网络请求的延迟和处理时间会增加,容易出现超时、错误等问题,特别是在大量并发请求时,可能导致服务挂掉(如 500 错误)。
  • 请求队列的积压:在内存不足的情况下,open-webui 可能会积压请求,导致响应变慢,最终无法及时处理所有请求,进而导致服务崩溃。

然而,ollama(和其中的 deepseek)容器在内存不够的情况下依旧能够稳定运行,不会像 open-webui 一样挂掉,并且单独提问也比在 open-webui 回答的速度快。这个现象可能与 open-webui 容器在处理大量 API 请求时的资源消耗有关,而 ollama 可能是通过更高效的资源管理,减少了对内存和 CPU 的依赖。

相比之下,ollama 容器直接运行模型,不依赖于外部的 API 调用,且可能具有以下优势:

  • 内部资源管理更高效ollama 在处理请求时,不需要通过复杂的前端请求-后端响应流程。它将整个流程封装在一个容器内,可能在内存和 CPU 使用上进行了更精简的优化。这使得即使在内存不足的情况下,它依旧能够较为稳定地运行。
  • 直接与模型交互:当你直接与 ollama 容器进行交互时,数据传输的路径更短,计算更加集中,减少了外部请求和资源竞争的问题。
  • 容错性较强ollama 可能有更好的内存管理策略,比如缓存、分页加载或其他优化策略,能够在内存资源有限的情况下保持运行稳定。

8. 家用部署方案的困难

我原本的计划是把 deepseek 部署在家用环境中,以达到省电并保持高效的目标。然而,实际测试结果显示,这种方案在当前的硬件配置下似乎不可行。特别是在内存和硬盘的压力下,系统的响应速度和稳定性并没有达到预期效果。

所以,如果你计划在家用机器上运行类似的 AI 模型,尤其是 deepseek,建议你提前检查硬件配置,特别是 SSD 硬盘和充足的内存。


总结与建议

ollama + deepseek + open-webui 的部署过程中,硬件配置、网络设置、显卡选择等因素都会对性能和稳定性产生影响。为了解决常见问题,可以根据以下建议进行调整:

  1. 使用 SSD 而非机械硬盘,以提高模型的加载和响应速度。
  2. 尝试通过修改配置文件来优化 GPU 使用,并确保显卡驱动和 CUDA 安装正确。
  3. 如果希望从外部访问 ollama,可以通过修改服务配置文件来开放端口。
  4. 对于性能要求较高的模型,尽量使用更高性能的显卡,并确保足够的显存。

这些调整可以帮助你更高效、稳定地运行 ollama + deepseek + open-webui,提高工作效率。


如果你有其他问题,欢迎继续补充或者提问,我可以帮你进一步调整博文内容!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2297541.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

sql难点

一、 假设你有一个查询&#xff0c;需要根据 id 是否为 null 来动态生成 SQL 条件&#xff1a; xml复制 <select id"getResources" resultType"Resource">SELECT * FROM resources<where><if test"id ! null">and id <!…

oracle表分区--范围分区

文章目录 oracle表分区分区的原因分区的优势oracle表分区的作用oracle表分区类型一、范围分区二、 创建分区表和使用&#xff1a;1、按照数值范围划分2、按照时间范围3、MAXVALUE2. 向现有表添加新的分区3、 分区维护和重新组织&#xff08;合并/删除&#xff09; oracle表分区…

mysql读写分离与proxysql的结合

上一篇文章介绍了mysql如何设置成主从复制模式&#xff0c;而主从复制的目的&#xff0c;是为了读写分离。 读写分离&#xff0c;拿spring boot项目来说&#xff0c;可以有2种方式&#xff1a; 1&#xff09;设置2个数据源&#xff0c;读和写分开使用 2&#xff09;使用中间件…

Untiy3d 铰链、弹簧,特殊的物理关节

&#xff08;一&#xff09;铰链组件 1.创建一个立方体和角色胶囊 2.给角色胶囊挂在控制脚本和刚体 using System.Collections; using System.Collections.Generic; using UnityEngine;public class plyer : MonoBehaviour {// Start is called once before the first execut…

Visual Studio 进行单元测试【入门】

摘要&#xff1a;在软件开发中&#xff0c;单元测试是一种重要的实践&#xff0c;通过验证代码的正确性&#xff0c;帮助开发者提高代码质量。本文将介绍如何在VisualStudio中进行单元测试&#xff0c;包括创建测试项目、编写测试代码、运行测试以及查看结果。 1. 什么是单元测…

Leetcode - 周赛435

目录 一、3442. 奇偶频次间的最大差值 I二、3443. K 次修改后的最大曼哈顿距离三、3444. 使数组包含目标值倍数的最少增量四、3445. 奇偶频次间的最大差值 II 一、3442. 奇偶频次间的最大差值 I 题目链接 本题使用数组统计字符串 s s s 中每个字符的出现次数&#xff0c;然后…

算法之 数论

文章目录 质数判断质数3115.质数的最大距离 质数筛选204.计数质数2761.和等于目标值的质数对 2521.数组乘积中的不同质因数数目 质数 质数的定义&#xff1a;除了本身和1&#xff0c;不能被其他小于它的数整除&#xff0c;最小的质数是 2 求解质数的几种方法 法1&#xff0c;根…

docker 导出导入

1第一步骤docker save docker save -o database-export-4.1.0.tar database-export-4.1.0.jar:latest 2检查镜像ls -l, 注意&#xff1a;文件可能没有其他文件导出权限&#xff1a;chmod 644 database-export-4.1.0.tar 3在新的服务器导入&#xff1a; docker load -i databa…

OSPF高级特性(3):安全特效

引言 OSPF的基础我们已经结束学习了&#xff0c;接下来我们继续学习OSPF的高级特性。为了方便大家阅读&#xff0c;我会将高级特性的几篇链接放在末尾&#xff0c;所有链接都是站内的&#xff0c;大家点击即可阅读&#xff1a; OSPF基础&#xff08;1&#xff09;&#xff1a;工…

基于SSM的农产品供销小程序+LW示例参考

1.项目介绍 系统角色&#xff1a;管理员、农户功能模块&#xff1a;用户管理、农户管理、产品分类管理、农产品管理、咨询管理、订单管理、收藏管理、购物车、充值、下单等技术选型&#xff1a;SSM&#xff0c;Vue&#xff08;后端管理web&#xff09;&#xff0c;uniapp等测试…

Unity URP的2D光照简介

官网工程&#xff0c;包括2d光照&#xff0c;动画&#xff0c;动效介绍&#xff1a; https://unity.com/cn/blog/games/happy-harvest-demo-latest-2d-techniques https://docs.unity3d.com/6000.0/Documentation/Manual/urp/Lights-2D-intro.html 人物脸部光照细节和脚上的阴影…

Jenkins 部署 之 Mac 一

Jenkins 部署 之 Mac 一 一.Jenkins 部署依赖 JDK 环境 查看 Mac JDK 环境&#xff0c;如果没有安装&#xff0c;先安装 打开终端输入命令:java -version Mac安装配置 JDK 二. 检查 HomeBrew 安装 检查 HomeBrew 是否安装&#xff0c;终端输入命令:brew -v Mac安装HomeB…

钉钉位置偏移解决,钉钉虚拟定位打卡

虚拟定位打卡工具 一&#xff0c;介绍免费获取工具 一&#xff0c;介绍 提到上班打卡&#xff0c;职场人的内心戏估计能拍成一部连续剧。打卡&#xff0c;这俩字仿佛自带“紧箍咒”&#xff0c;让无数打工人又爱又恨。想象一下&#xff0c;你气喘吁吁地冲进办公室&#xff0c;…

使用DeepSeek和Kimi快速自动生成PPT

目录 步骤1&#xff1a;在DeepSeek中生成要制作的PPT主要大纲内容。 &#xff08;1&#xff09;在DeepSeek网页端生成 &#xff08;2&#xff09;在本地部署DeepSeek后&#xff0c;使用chatBox生成PPT内容 步骤2&#xff1a;将DeepSeek成的PPT内容复制到Kimi中 步骤3&…

Webpack包

黑马程序员视频地址&#xff1a; Node.js与Webpack-16.Webpack简介以及体验 前言&#xff1a; 本篇中部分标题后标有数字&#xff0c;代表学习顺序 &#xff0c;同时也可以作为使用顺序参考 webpack包 基础认识 初步使用 下载webpack包和webpack-cli包 注意点&#xff1a; 1…

鸿蒙HarmonyOS NEXT开发:横竖屏切换开发实践

文章目录 一、概述二、窗口旋转说明1、配置module.json5的orientation字段2、调用窗口的setPreferredOrientation方法 四、性能优化1、使用自定义组件冻结2、对图片使用autoResize3、排查一些耗时操作 四、常见场景示例1、视频类应用横竖屏开发2、游戏类应用横屏开发 五、其他常…

基于Spring Security 6的OAuth2 系列之十五 - 高级特性--客户端认证方式

之所以想写这一系列&#xff0c;是因为之前工作过程中使用Spring Security OAuth2搭建了网关和授权服务器&#xff0c;但当时基于spring-boot 2.3.x&#xff0c;其默认的Spring Security是5.3.x。之后新项目升级到了spring-boot 3.3.0&#xff0c;结果一看Spring Security也升级…

排序合集之快排详解(二)

摘要&#xff1a;快速排序是一种在实践中广泛使用的高效排序算法。它基于分治策略&#xff0c;平均时间复杂度为O(n log n)&#xff0c;使其成为处理大型数据集的理想选择。本文将深入探讨快速排序的各种实现方式、优化技巧以及非递归实现&#xff0c;并通过C语言代码示例进行详…

前缀树算法篇:前缀信息的巧妙获取

前缀树算法篇&#xff1a;前缀信息的巧妙获取 那么前缀树算法是一个非常常用的算法&#xff0c;那么在介绍我们前缀树具体的原理以及实现上&#xff0c;我们先来说一下我们前缀树所应用的一个场景&#xff0c;那么在一个字符串的数据集合当中&#xff0c;那么我们查询我们某个字…

大数据系列 | 白话讲解大数据技术生态中Hadoop、Hive、Spark的关系介绍

大数据属于数据管理系统的范畴&#xff0c;数据管理系统无非就两个问题&#xff1a;数据怎么存、数据怎么算    现在的信息爆炸时代&#xff0c;一台服务器数据存不下&#xff0c;可以找10台服务器存储&#xff0c;10台存储不下&#xff0c;可以再找100台服务器存储。但是这1…