01.Docker 概述

news2025/2/12 18:14:18

Docker 概述

    • 1. Docker 的主要目标
    • 2. 使用Docker 容器化封装应用程序的意义
    • 3. 容器和虚拟机技术比较
    • 4. 容器和虚拟机表现比较
    • 5. Docker 的组成
    • 6. Namespace
    • 7. Control groups
    • 8. 容器管理工具
    • 9. docker 的优缺点
    • 10. 容器的相关技术

docker 官网: http://www.docker.com

帮助文档链接: https://docs.docker.com/

docker 镜像: https://hub.docker.com/

docker 中文网站: http://www.docker.org.cn/

Docker 是一个可以将应用程序及其依赖打包到几乎可以在任何服务器上运行的容器的工具。

容器是一种 IT 技术。容器其实是一种沙盒技术。顾名思义,沙盒就是能够像一个集装 箱一样,把你的应用装起来。这样,应用与应用之间就有了边界而不会相互干扰;同时装在沙盒里面的应 用,也可以很方便的被搬来搬去,这也是 PaaS 想要的最理想的状态(可移植性,标准化,隔离性)。

容器是软件工业上的集装箱的技术,集装箱的标准化,减少了包装成本,大大提高货物运输和装卸效 率,是传统运输行业的重大变革。早期的软件项目中软件更新,发布低效,开发测试发布周期很长,很 难敏捷。有了容器技术,就可以利用其标准化的特点,大幅提高生产效率。

容器技术是虚拟化、云计算、大数据之后的一门新兴的并且是炙手可热的新技术, 容器技术提高了硬件 资源利用率、 方便了企业的业务快速横向扩容(可以达到秒级快速扩容)、 实现了业务宕机自愈功能 (配合K8S可以实现,但OpenStack无此功能),因此未来数年会是一个容器愈发流行的时代 ,这是 一 个对于 IT 行业来说非常有影响和价值的技术,而对于IT行业的从业者来说, 熟练掌握容器技术无疑是一 个很有前景的行业工作机会。

Docker (码头工人)是一个开源项目,诞生于 2013 年初,最初是 dotCloud 公司(后由于 Docker 开 源后大受欢迎就将公司改名为 Docker Inc ,总部位于美国加州的旧金山)内部的一个开源的 PAAS 服务 (Platform as a ServiceService )的业余项目。它基于 Google 公司推出的 Go 语言实现。 项目后来加入 了 Linux 基金会,遵从了 Apache 2.0 协议,项目代码在 GitHub 上进行维护。

Docker 是基于 Linux 内核实现,Docker 最早采用 LXC 技术 ,LXC 是 Linux 原生支持的容器技术 ,可 以提供轻量级的虚拟化 ,可以说 docker 就是基于 LXC 发展起来 的,提供 LXC 的高级封装,标准的配 置方法,在LXC的基础之上,docker提供了一系列更强大的功能。而虚拟化技术 KVM(KernelKernelbased Virtual Machine Machine) 基于 模块实现, 后来Docker 改为自己研发并开源的 runc 技术运行 容器,彻底抛弃了LXC。

Docker 相比虚拟机的交付速度更快,资源消耗更低,Docker 采用客户端/服务端架构,使用远程API来 管理和创建容器,其可以轻松的创建一个轻量级的、可移植的、自给自足的容器,docker 的三大理念是 build(构建)、ship(运输)、 run(运行),Docker遵从apache 2.0协议,并通过(namespace及cgroup 等)来提供容器的资源隔离与安全保障等,所以Docke容器在运行时不需要类似虚拟机(空运行的虚拟 机占用物理机6-8%性能)的额外资源开销,因此可以大幅提高资源利用率,总而言之Docker是一种用了新颖方式实现的轻量级虚拟机.类似于VM但是在原理和应用上和VM的差别还是很大的,并且docker的专 业叫法是应用容器(Application Container)。

1. Docker 的主要目标

Build, Ship and Run Any App, Anywhere,即通过对应用组件的封装(Packaging)、分发 (Distribution)、部署(Deployment)、运行(Runtime)等生命周期的管理,达到应用组件级别的 “一次封装,到处运行”。这里的应用组件,既可以是一个Web应用,也可以是一套数据库服务,甚至是 一个操作系统。将应用运行在Docker 容器上,可以实现跨平台,跨服务器,只需一次配置准备好相关的 应用环境,即可实现到处运行,保证研发和生产环境的一致性,解决了应用和运行环境的兼容性问题, 从而极大提升了部署效率,减少故障的可能性

2. 使用Docker 容器化封装应用程序的意义

  • 统一基础设施环境-docker环境

    • 硬件的组成配置
    • 操作系统的版本
    • 运行时环境的异构
  • 统一程序打包(装箱)方式-docker镜像

    • java程序
    • python程序
    • nodejs程序

  • 统一程序部署(运行)方式-docker容器
    • java-jar…→ docker run…
    • python manage.py runserver… → docker run…
    • npm run dev … → docker run…

3. 容器和虚拟机技术比较

  • 传统虚拟机是虚拟出一个主机硬件,并且运行一个完整的操作系统 ,然后在这个系统上安装和运行软 件
  • 容器内的应用直接运行在宿主机的内核之上,容器并没有自己的内核,也不需要虚拟硬件,相当轻量化
  • 每个容器间是互相隔离,每个容器内都有一个属于自己的独立文件系统,独立的进程空间,网络空间,用 户空间等,所以在同一个宿主机上的多个容器之间彼此不会相互影响

4. 容器和虚拟机表现比较

  • 资源利用率更高: 开销更小,不需要启动单独的虚拟机OS内核占用硬件资源,可以将服务器性能压榨 至极致.虚拟机一般会有5-20%的损耗,容器运行基本无损耗,所以生产中一台物理机只能运行数十个 虚拟机,但是一般可以运行数百个容器
  • 启动速度更快: 可以在数秒内完成启动
  • 占用空间更小: 容器一般占用的磁盘空间以MB为单位,而虚拟机以GB
  • 集成性更好: 和 CI/CD(持续集成/持续部署)相关技术结合性更好,实现打包镜像发布测试可以一 键运行,做到自动化并快速的部署管理,实现高效的开发生命周期

使用虚拟机是为了更好的实现服务运行环境隔离,每个虚拟机都有独立的内核,虚拟化可以实现不同操 作系统的虚拟机,但是通常一个虚拟机只运行一个服务,很明显资源利用率比较低且造成不必要的性能 损耗,我们创建虚拟机的目的是为了运行应用程序,比如Nginx、PHP、Tomcat等web程序,使用虚拟 机无疑带来了一些不必要的资源开销,但是容器技术则基于减少中间运行环节带来较大的性能提升。

根据实验,一个运行着CentOS的KVM虚拟机启动后,在不做优化的情况下,虚拟机自己就需要占用 100~200 MB内存。此外,用户应用运行在虚拟机里面,它对宿主机操作系统的调用就不可避免地要经 过虚拟化软件的拦截和处理,这本身又是一层性能损耗,尤其对计算资源、网络和磁盘I/O的损耗非常 大。

比如: 一台96G内存的物理服务器,为了运行java程序的虚拟机一般需要分配8G内存/4核的资源,只能 运行13台左右虚拟机,但是改为在docker容器上运行Java程序,每个容器只需要分配4G内存即可,同样 的物理服务器就可以运行25个左右容器,运行数量相当于提高一倍,可以大幅节省IT支出,通常情况下 至少可节约一半以上的物理设备

5. Docker 的组成

在这里插入图片描述

  • Docker 主机(Host): 一个物理机或虚拟机,用于运行Docker服务进程和容器,也称为宿主机, node节点
  • Docker 服务端(Server): Docker守护进程,运行docker容器
  • Docker 客户端(Client): 客户端使用 docker 命令或其他工具调用docker API Docker 镜像(Images): 镜像可以理解为创建实例使用的模板,本质上就是一些程序文件的集合
  • Docker 仓库(Registry): 保存镜像的仓库,官方仓库: https://hub.docker.com/,可以搭建私有仓库 harbor
  • Docker 容器(Container): 容器是从镜像生成对外提供服务的一个或一组服务,其本质就是将镜像中 的程序启动后生成的进程

6. Namespace

namespace是Linux系统的底层概念,在内核层实现,即有一些不同类型的命名空间被部署在内核,各 个docker容器运行在同一个docker主进程并且共用同一个宿主机系统内核,各docker容器运行在宿主机 的用户空间,每个容器都要有类似于虚拟机一样的相互隔离的运行空间,但是容器技术是在一个进程内 实现运行指定服务的运行环境,并且还可以保护宿主机内核不受其他进程的干扰和影响,如文件系统空 间、网络空间、进程空间等,目前主要通过以下技术实现容器运行空间的相互隔离:

Pid namespace

  • 不同用户的进程就是通过Pid namespace 隔离开的,且不同namespace 中可以有相同Pid。
  • 有了Pid namespace,每个namespace 中的Pid 能够相互隔离:

net namespace

  • 网络隔离是通过net namespace 实现的,每个net namespace 有独立的network devices,IP,addresses,IP routing tables, /proc/net 目录。
  • Docker 默认采用veth 的方式将container 中的虚拟网卡同host 上的一个docker bridge: docker0连接在一起。

ipc namespace

  • Container 中进程交互还是采用linux 常见的进程间交互方法(interprocess communication -IPC),包括常见的信号量、消息队列和共享内存。
  • container 的进程间交互实际上还是host上具有相同Pid namespace 中的进程间交互,因此需要在IPC资源申请时加入namespace 信息-每个IPC资源有一个唯一的32 位ID。

mnt namespace

  • mnt namespace 允许不同namespace 的进程看到的文件结构不同,这样每个namespace 中的进程所看到的文件目录就被隔离开了

uts namespace

  • UTS(“UNIX Time-sharing System") namespace允许每个container 拥有独立的hostname 和domain name,使其在网络上可以被视作一个独立的节点而非Host 上的一个进程。

user namespace

  • 每个container 可以有不同的user 和group id,也就是说可以在container 内部用container 内部的用户执行程序而非Host 上的用户。

7. Control groups

Linux Cgroups的全称是Linux Control Groups,是Linux内核的一个功能.最早是由Google的工程师(主 要是Paul Menage和Rohit Seth)在2006年发起,最早的名称为进程容器(process containers)。在 2007年时,因为在Linux内核中,容器(container)这个名词有许多不同的意义,为避免混乱,被重命 名为cgroup,并且被合并到2.6.24版的内核中去。自那以后,又添加了很多功能。

如果不对一个容器做任何资源限制,则宿主机会允许其占用无限大的内存空间,有时候会因为代码bug 程序会一直申请内存,直到把宿主机内存占完,为了避免此类的问题出现,宿主机有必要对容器进行资 源分配限制,比如CPU、内存等

Cgroups 最主要的作用,就是限制一个进程组能够使用的资源上限,包括CPU、内存、磁盘、网络带宽 等等。此外,还能够对进程进行优先级设置,资源的计量以及资源的控制(比如:将进程挂起和恢复等操 作)。

Cgroups在内核层默认已经开启,从CentOS 和 Ubuntu 不同版本对比,显然内核较新的支持的功能更 多。

8. 容器管理工具

有了以上的chroot、namespace、cgroups就具备了基础的容器运行环境,但是还需要有相应的容器创 建与删除的管理工具、以及怎么样把容器运行起来、容器数据怎么处理、怎么进行启动与关闭等问题需 要解决,于是容器管理技术出现了。目前主要是使用docker,早期使用 LXC。

Docker 相当于增强版的LXC,功能更为强大和易用,也是当前最主流的容器前端管理工具

Docker 先启动一个容器也需要一个外部模板,也称为镜像,docke的镜像可以保存在一个公共的地方共 享使用,只要把镜像下载下来就可以使用,最主要的是可以在镜像基础之上做自定义配置并且可以再把 其提交为一个镜像,一个镜像可以被启动为多个容器。

Docker的镜像是分层的,镜像底层为库文件且只读层即不能写入也不能删除数据,从镜像加载启动为一 个容器后会生成一个可写层,其写入的数据会复制到宿主机上对应容器的目录,但是容器内的数据在删 除容器后也会被随之删除。

Podman 和docker不同之处

  • docker 需要在系统上运行一个守护进程(docker daemon),这会产生一定的开销,而podman 不 需要
  • 启动容器的方式不同:
    • docker cli 命令通过API跟 docker Engine 才会调用 Docker Engine(引擎) 交互告诉它我想创建一个container,然后 container的process(进程)不会是 OCI container runtime(runc) 来启动一个container。这代表 Docker CLI 的 Engine 的 child process 。 child process(子进程),而是
    • Podman 是直接给 container process 直接是 Docker OCI containner runtime(runc) 进行交互来创建container的,所以 podman 的 child process 。
  • 因为docke有docker daemon,所以docker启动的容器支持–restart 策略,但是podman不支持
  • docker需要使用root用户来创建容器。 这可能会产生安全风险,尤其是当用户知道docker run命 令的–privileged选项时。podman既可以由root用户运行,也可以由非特权用户运行
  • docker在Linux上作为守护进程运行扼杀了容器社区的创新。 如果要更改容器的工作方式,则需要 更改docker守护程序并将这些更改推送到上游。 没有守护进程,容器基础结构更加模块化,更容 易进行更改。 podman的无守护进程架构更加灵活和安全。

9. docker 的优缺点

优点

  • 快速部署: 短时间内可以部署成百上千个应用,更快速交付到线上
  • 高效虚拟化: 不需要额外hypervisor支持,基于linux内核实现应用虚拟化,相比虚拟机大幅提高性 能和效率
  • 节省开支: 提高服务器利用率,降低IT支出
  • 简化配置: 将运行环境打包保存至容器,使用时直接启动即可
  • 环境统一: 将开发,测试,生产的应用运行环境进行标准化和统一,减少环境不一样带来的各种问 题
  • 快速迁移和扩展: 可实现跨平台运行在物理机、虚拟机、公有云等环境,良好的兼容性可以方便将 应用从A宿主机迁移到B宿主机,甚至是A平台迁移到B平台
  • 更好的实现面向服务的架构,推荐一个容器只运行一个应用,实现分布的应用模型,可以方便的进行横 向扩展,符合开发中高内聚,低耦合的要求,减少不同服务之间的相互影响

缺点

  • 多个容器共用宿主机的内核,各应用之间的隔离不如虚拟机彻底
  • 由于和宿主机之间的进程也是隔离的,需要进入容器查看和调试容器内进程等资源,变得比较困难和 繁琐
  • 如果容器内进程需要查看和调试,需要在每个容器内都需要安装相应的工具,这也造成存储空间的重 复浪费

10. 容器的相关技术

容器 runtime

runtime是真正运行容器的地方,因此为了运行不同的容器runtime需要和操作系统内核紧密合作相互在 支持,以便为容器提供相应的运行环境

目前Docker默认的runtime是runc

容器管理工具

管理工具连接runtime与用户,对用户提供图形或命令方式操作,然后管理工具将用户操作传递给 runtime执行。

镜像仓库 Registry

统一保存镜像而且是多个不同镜像版本的地方,叫做镜像仓库

容器编排工具

当多个容器在多个主机运行的时候,单独管理容器是相当复杂而且很容易出错,而且也无法实现某一台 主机宕机后容器自动迁移到其他主机从而实现高可用的目的,也无法实现动态伸缩的功能,因此需要有 一种工具可以实现统一管理、动态伸缩、故障自愈、批量执行等功能,这就是容器编排引擎

容器编排通常包括容器管理、调度、集群定义和服务发现等功能

  • Docker compose : docker 官方实现单机的容器的编排工具
  • Docker swarm: docker 官方开发的容器编排引擎,支持overlay network
  • Mesos+Marathon: Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内 核。Mesos最初是由加州大学伯克利分校的AMPLab开发的,后在Twitter得到广泛使用。通用的集 群组员调度平台,mesos(资源分配)与marathon(容器编排平台)一起提供容器编排引擎功能
    ocker compose : docker 官方实现单机的容器的编排工具
  • Docker swarm: docker 官方开发的容器编排引擎,支持overlay network
  • Mesos+Marathon: Mesos是Apache下的开源分布式资源管理框架,它被称为是分布式系统的内 核。Mesos最初是由加州大学伯克利分校的AMPLab开发的,后在Twitter得到广泛使用。通用的集 群组员调度平台,mesos(资源分配)与marathon(容器编排平台)一起提供容器编排引擎功能
  • Kubernetes: google领导开发的容器编排引擎,内部项目为Borg,且其同时支持 docker 和 CoreOS,当前已成为容器编排工具事实上的标准

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296959.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

从零搭建:Canal实时数据管道打通MySQL与Elasticsearch

Canal实时同步Mysql Binlog至 Elasticsearch 文章目录 Canal实时同步Mysql **Binlog**至**Elasticsearch** 一. 环境准备1.环境检查检查Mysql是否开启BinLog开启Mysql BinlogJava环境检查 2.新建测试库和表3.新建Es索引 二.**部署 Canal Server****2.1 解压安装包****2.2 配置 …

《战神:诸神黄昏》游戏闪退后提示弹窗“d3dx9_43.dll缺失”“找不到d3dx11_43.d”该怎么处理?

宝子们,是不是在玩《战神:诸神黄昏》的时候,突然弹出一个提示:“找不到d3dx9_43.dll”或者“d3dx11_43.dll缺失”?这可真是让人着急上火!别慌,今天就给大家唠唠这个文件为啥会丢,还有…

Ollama本地部署DeepSeek(Mac)

准备工作 DeepSeek对比 DeepSeek-r1 DeepSeek-R1的多个版本:加上2个原装671B的,总计8个参数版本 DeepSeek-R1 671B DeepSeek-R1-Zero 671B DeepSeek-R1-Distill-Llama-70B DeepSeek-R1-Distill-Qwen-32B DeepSeek-R1-Distill-Qwen-14B DeepSeek-R1-Di…

arm linux下的中断处理过程。

本文基于ast2600 soc来阐述,内核版本为5.10 1.中断gic初始化 start_kernel() -> init_IRQ() -> irqchip_init() of_irq_init()主要是构建of_intc_desc. 489-514: 从__irqchip_of_table中找到dts node中匹配的of_table(匹配matches->compatible)&#xf…

Docker的深入浅出

目录 Docker引擎 Docker镜像 (镜像由多个层组成,每层叠加之后,从外部看来就如一个独立的对象。镜像内部是一个精简的操作系统(OS),同时还包含应用运行所必须的文件和依赖包) Docker容器 应用容器化--Docker化 最佳…

内存映射工作原理和适用场景

Linux 内存映射(Memory Mapping)是一种将文件或其他资源直接映射到进程虚拟内存地址空间的机制,允许进程像访问内存一样访问文件或设备。这种机制通过 mmap() 系统调用实现,常用于高效文件操作、进程间共享内存等场景。 1. 内存映…

自动驾驶超声波雷达:市场潜力爆发,引领未来出行新趋势

在自动驾驶技术的飞速发展中,自动驾驶超声波雷达作为一项关键技术,正逐渐崭露头角,其重要性及市场增长潜力不容忽视。本文将深入探讨自动驾驶超声波雷达的重要性、市场增长趋势、显著优势、全球市场规模与驱动因素、主要市场参与者以及不同地…

41.兼职网站管理系统(基于springbootvue的Java项目)

目录 1.系统的受众说明 2.相关技术 2.1 B/S架构 2.2 Java技术介绍 2.3 mysql数据库介绍 2.4 Spring Boot框架 3.系统分析 3.1 需求分析 3.2 系统可行性分析 3.2.1技术可行性:技术背景 3.2.2经济可行性 3.2.3操作可行性: 3.3 项目设计目…

Linux ARM64 将内核虚拟地址转化为物理地址

文章目录 前言一、通用方案1.1 kern_addr_valid1.2 __pa 二、ARM64架构2.1 AT S1E1R2.2 is_kernel_addr_vaild2.3 va2pa_helper 三、demo演示参考资料 前言 本文介绍一种通用的将内核虚拟地址转化为物理地址的方案以及一种适用于ARM64 将内核虚拟地址转化为物理地址的方案&…

spring学习(使用spring加载properties文件信息)(spring自定义标签引入)

目录 一、博客引言。 二、基本配置准备。 (1)初步分析。 (2)初始spring配置文件。 三、spring自定义标签的引入。 (1)基本了解。 (2)引入新的命名空间:xmlns:context。 &…

Flutter项目试水

1基本介绍 本文章在构建您的第一个 Flutter 应用指导下进行实践 可作为项目实践的辅助参考资料 Flutter 是 Google 的界面工具包,用于通过单一代码库针对移动设备、Web 和桌面设备构建应用。在此 Codelab 中,您将构建以下 Flutter 应用。 该应用可以…

Linux(Ubuntu)安装pyenv和pyenv-virtualenv

Ubuntu安装pyenv和pyenv-virtualenv 安装 pyenv1. 下载 pyenv2. 配置环境变量3. 重启 Shell4. 安装依赖5.检测是否安装成功 安装 pyenv-virtualenv1. 安装 pyenv-virtualenv2. 配置环境变量3. 重启 Shell pyenv 的使用1. 查看可安装的 Python 版本2. 安装指定版本的 Python3. 查…

调用DeepSeek官方的API接口

效果 前端样式体验链接:https://livequeen.top/deepseekshow 准备工作 1、注册deepseek官网账号 地址:DeepSeek 点击进入右上角【API开放平台】,并进行账号注册。 2、注册完成后,依次点击【API keys】-【生成API key】&#x…

MFC线程安全案例

作者:小蜗牛向前冲 名言:我可以接受失败,但我不能接受放弃 如果觉的博主的文章还不错的话,还请点赞,收藏,关注👀支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、项目解析 二…

Win11下搭建Kafka环境

目录 一、环境准备 二、安装JDK 1、下载JDK 2、配置环境变量 3、验证 三、安装zookeeper 1、下载Zookeeper安装包 2、配置环境变量 3、修改配置文件zoo.cfg 4、启动Zookeeper服务 4.1 启动Zookeeper客户端验证 4.2 启动客户端 四、安装Kafka 1、下载Kafka安装包…

51c自动驾驶~合集49

我自己的原文哦~ https://blog.51cto.com/whaosoft/13164876 #Ultra-AV 轨迹预测新基准!清华开源:统一自动驾驶纵向轨迹数据集 自动驾驶车辆在交通运输领域展现出巨大潜力,而理解其纵向驾驶行为是实现安全高效自动驾驶的关键。现有的开…

Python——批量图片转PDF(GUI版本)

目录 专栏导读1、背景介绍2、库的安装3、核心代码4、完整代码总结专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️‍🌈 博客主页:请点击——> 一晌小贪欢的博客主页求关注 👍 该系列文章专栏:请点击——>Python办公自动化专…

LabVIEW无人机飞行状态监测系统

近年来,无人机在农业植保、电力巡检、应急救灾等多个领域得到了广泛应用。然而,传统的目视操控方式仍然存在以下三大问题: 飞行姿态的感知主要依赖操作者的经验; 飞行中突发的姿态异常难以及时发现; 飞行数据缺乏系统…

算法16(力扣451)——根据字符出现频率排序

1、问题 给定一个字符串 s ,根据字符出现的 频率 对其进行 降序排序 。一个字符出现的频率 是它出现在字符串中的次数, 返回 已排序的字符串。如果有多个答案,返回其中任何一个。 2、示例 (1) 输入: s "tree&q…

Response 和 Request 介绍

怀旧网个人博客网站地址:怀旧网,博客详情:Response 和 Request 介绍 1、HttpServletResponse 1、简单分类 2、文件下载 通过Response下载文件数据 放一个文件到resources目录 编写下载文件Servlet文件 public class FileDownServlet exten…