基于 GEE 利用插值方法填补缺失影像

news2025/2/11 23:31:23

目录

1 完整代码

2 运行结果



利用GEE合成NDVI时,如果研究区较大,一个月的影像覆盖不了整个研究区,就会有缺失的地方,还有就是去云之后,有云量的地区变成空值。

所以今天来用一种插值的方法来填补缺失的影像,以NDVI为例,主要实现原理其实就是用前后两个月的NDVI的均值进行填补。

1 完整代码

var roi = table;
Map.centerObject(roi,7)
var styling = {color:"red",fillColor:"00000000"};
Map.addLayer(roi.style(styling),{},"geometry")
var img_normalize = function(img){ 
  var minMax = img.reduceRegion({ 
    reducer:ee.Reducer.minMax(), 
    geometry: roi, 
    scale: 30, 
    maxPixels: 10e13, 
    tileScale: 16 }) 
var year = img.get('year') 
var normalize = ee.ImageCollection.fromImages( 
  img.bandNames().map(function(name){ 
    name = ee.String(name); 
    var band = img.select(name); 
    return band.unitScale(ee.Number(minMax.get(name.cat('_min'))), ee.Number(minMax.get(name.cat('_max')))); }) 
        ).toBands().rename(img.bandNames()); 
        return normalize;
  
}
function maskL457sr(image) {//l57去云
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Unused
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBand = image.select('ST_B6').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBand, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}
/*function maskL8sr(image) {
  // Bit 0 - Fill
  // Bit 1 - Dilated Cloud
  // Bit 2 - Cirrus
  // Bit 3 - Cloud
  // Bit 4 - Cloud Shadow
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Replace the original bands with the scaled ones and apply the masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}*/
var imageCollection = ee.ImageCollection('LANDSAT/LT05/C02/T1_L2').filterBounds(roi);//1111111
var monthCount = ee.List.sequence(0, 11);



// 通过图像收集,生成每月NDVI中值图像
var composites = ee.ImageCollection.fromImages(monthCount.map(function(m) {
  var startMonth = 1; // 从1月开始
  var startYear = ee.Number(2000); // 1993-1
  
  var month = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('month');
  var year = ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').get('year')
  
  // 按年筛选,然后按月筛选
  var filtered = imageCollection.filter(ee.Filter.calendarRange({
    start: year.subtract(1), // 过去两年的平均数
    end: year,
    field: 'year'
  })).filter(ee.Filter.calendarRange({
    start: month,
    field: 'month'
  }));
  // mask for clouds and then take the median///
  var composite = filtered.map(maskL457sr).median().clip(roi);
  return composite.normalizedDifference(['SR_B4', 'SR_B3']).rename('NDVI')
      .set('month', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month'))
      .set('system:time_start', ee.Date.fromYMD(startYear, startMonth, 1).advance(m,'month').millis());
}));
print(composites);
var stackCollection = function(collection) {
  // 创建一个初始图像.
  var first = ee.Image(collection.first()).select([]);

  // Write a function that appends a band to an image.
  var appendBands = function(image, previous) {
    return ee.Image(previous).addBands(image);
  };
  return ee.Image(collection.iterate(appendBands, first));
};
var compos = stackCollection(composites);
print('插值前', compos);


// 用上个月和下个月的平均值替换被遮挡的像素 
var replacedVals = composites.map(function(image){
  var currentDate = ee.Date(image.get('system:time_start'));
  var meanImage = composites.filterDate(
                currentDate.advance(-2,'month'), currentDate.advance(2, 'month')).mean();//33333333333333333333333max min median
  // 替换所有被屏蔽的值
  return meanImage.where(image, image);
});

// 将ImageCollection堆叠成一个多波段的光栅,以便下载
var stackCollection = function(collection) {
  // 创建一个初始图像.
  var first = ee.Image(collection.first()).select([]);

  // Write a function that appends a band to an image.
  var appendBands = function(image, previous) {
    return ee.Image(previous).addBands(image);
  };
  return ee.Image(collection.iterate(appendBands, first));
};
var stacked = stackCollection(replacedVals);
print('stacked image', stacked);
var Vis = {

  min: -1,

  max: 1.0,

  palette: [

    'FFFFFF', 'CE7E45', 'DF923D', 'F1B555', 'FCD163', '99B718', '74A901',

    '66A000', '529400', '3E8601', '207401', '056201', '004C00', '023B01',

    '012E01', '011D01', '011301'

  ],

};
Map.addLayer(compos.select(6), Vis, '插值前');
// .0-11  分别代表1-12个月
Map.addLayer(stacked.select(6), Vis, 'NDVI');//555555555

Export.image.toDrive({
  image: stacked.select(0),//选择导出影像的波段0-11  分别代表1-12个月
  description: 'NDVI',//选择导出云盘的文件夹名称
  crs: "EPSG:4326",//坐标系
  scale: 30,//空间分辨率
  region: roi,//研究区
  maxPixels: 1e13,//最大像元个数
  folder: 'NDVI'
});

2 运行结果

填补空值之前的效果
填补空值之后的效果

可以看出,填补的效果还是非常明显的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296552.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在浏览器中搭建开源Web操作系统Puter的本地与远程环境

文章目录 前言1.关于Puter2.本地部署Puter3.Puter简单使用4. 安装内网穿透5.配置puter公网地址6. 配置固定公网地址 前言 嘿,小伙伴们!是不是每次开机都要像打地鼠一样不停地点击各种网盘和应用程序的登录按钮,感觉超级麻烦?更让…

使用EVE-NG-锐捷实现单臂路由

一、基础知识 1.三层vlan vlan在三层环境中通常用作网关vlan配上ip网关内部接口ip 2.vlan创建步骤 创建vlan将接口划分到不同的vlan给vlan配置ip地址 二、项目案例 1、项目拓扑 2、项目实现 PC1配置 配置PC1IP地址为192.168.1.10/24网关地址为192.168.1.1 ip 192.168.1…

二、通义灵码插件保姆级教学-IDEA(使用篇)

一、IntelliJ IDEA 中使用指南 1.1、代码解释 选择需要解释的代码 —> 右键 —> 通义灵码 —> 解释代码 解释代码很详细,感觉很强大有木有,关键还会生成流程图,对程序员理解业务非常有帮忙,基本能做到哪里不懂点哪里。…

HAL库外设宝典:基于CubeMX的STM32开发手册(持续更新)

目录 前言 GPIO(通用输入输出引脚) 推挽输出模式 浮空输入和上拉输入模式 GPIO其他模式以及内部电路原理 输出驱动器 输入驱动器 中断 外部中断(EXTI) 深入中断(内部机制及原理) 外部中断/事件控…

HarmonyOS 5.0应用开发——ContentSlot的使用

【高心星出品】 文章目录 ContentSlot的使用使用方法案例运行结果 完整代码 ContentSlot的使用 用于渲染并管理Native层使用C-API创建的组件同时也支持ArkTS创建的NodeContent对象。 支持混合模式开发,当容器是ArkTS组件,子组件在Native侧创建时&#…

[AI]Mac本地部署Deepseek R1模型 — — 保姆级教程

[AI]Mac本地部署DeepSeek R1模型 — — 保姆级教程 DeepSeek R1是中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。 作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MI…

群晖NAS如何通过WebDAV和内网穿透实现Joplin笔记远程同步

文章目录 前言1. 检查群晖Webdav 服务2. 本地局域网IP同步测试3. 群晖安装Cpolar工具4. 创建Webdav公网地址5. Joplin连接WebDav6. 固定Webdav公网地址7. 公网环境连接测试 前言 在数字化浪潮的推动下,笔记应用已成为我们记录生活、整理思绪的重要工具。Joplin&…

CSS3+动画

浏览器内核以及其前缀 css标准中各个属性都要经历从草案到推荐的过程,css3中的属性进展都不一样,浏览器厂商在标准尚未明确的情况下提前支持会有风险,浏览器厂商对新属性的支持情况也不同,所有会加厂商前缀加以区分。如果某个属性…

C++ list介绍

文章目录 1. list简介2. list的实现框架2.1 链表结点2.2 链表迭代器2.3 链表 3. list迭代器及反向迭代器设计3.1 list迭代器3.2 list反向迭代器3.3 list迭代器失效 4. list与vector比较 1. list简介 list,即链表。 链表的种类有很多,是否带头结点&#…

Java - 在Linux系统上使用OpenCV和Tesseract

系统环境 确保Linux系统安装了cmake构建工具,以及java和ant(这两者如果没有,可能会影响到后面编译opencv生成.so和.jar文件)。 sudo apt-get update sudo apt-get install build-essential sudo apt install cmake build-essen…

自有服务与软件包

—— 小 峰 编 程 目录 ​编辑 一、自有服务概述 二、systemctl管理服务命令 1、显示服务 2、查看启动和停止服务 3、服务持久化 三、常用自有服务(ntp,firewalld,crond) 1、ntp时间同步服务 1)NTP同步服务器原理 2)到哪里去找NPT服务…

Python 鼠标轨迹 - 防止游戏检测

一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…

chrome-mojo C++ Bindings API

概述 Mojo C 绑定 API 利用C 系统 API提供一组更自然的原语,用于通过 Mojo 消息管道进行通信。结合从Mojom IDL 和绑定生成器生成的代码,用户可以轻松地跨任意进程内和进程间边界连接接口客户端和实现。 本文档通过示例代码片段提供了绑定 API 用法的详…

java: framework from BLL、DAL、IDAL、MODEL、Factory using oracle

oracel 21c sql: -- 创建 School 表 CREATE TABLE School (SchoolId CHAR(5) NOT NULL,SchoolName NVARCHAR2(500) NOT NULL,SchoolTelNo VARCHAR2(8) NULL,PRIMARY KEY (SchoolId) );CREATE OR REPLACE PROCEDURE addschool(p_school_id IN CHAR,p_school_name IN NVARCHAR2,p…

Ubuntu22.04部署deepseek大模型

Ollama 官方版 Ollama 官方版: https://ollama.com/ 若你的显卡是在Linux上面 可以使用如下命令安装 curl -fsSL https://ollama.com/install.sh | shollama命令查看 rootheyu-virtual-machine:~# ollama -h Large language model runnerUsage:ollama [flags]ollama [comman…

Redis数据库(二):Redis 常用的五种数据结构

Redis 能够做到高性能的原因主要有两个,一是它本身是内存型数据库,二是采用了多种适用于不同场景的底层数据结构。 Redis 常用的数据结构支持字符串、列表、哈希表、集合和有序集合。实现这些数据结构的底层数据结构有 6 种,分别是简单动态字…

网络安全溯源 思路 网络安全原理

网络安全背景 网络就是实现不同主机之间的通讯。网络出现之初利用TCP/IP协议簇的相关协议概念,已经满足了互连两台主机之间可以进行通讯的目的,虽然看似简简单单几句话,就描述了网络概念与网络出现的目的,但是为了真正实现两台主机…

BS架构(笔记整理)

楔子.基本概念 1.在网络架构中: 服务器通常是集中式计算资源,负责处理和存储数据;客户机是请求这些服务的终端设备,可能是个人电脑或移动设备;浏览器则是客户机上用来与服务器交互的工具,负责展示网页内容…

06排序 + 查找(D2_查找(D2_刷题练习))

目录 1. 二分查找-I 1.1 题目描述 1.2 解题思路 方法:二分法(推荐使用) 2. 二维数组中的查找 2.1 题目描述 2.2 解题思路 方法一:二分查找(推荐使用) 3. 寻找峰值 3.1 题目描述 3.2 解题思路 方…

C++ 设计模式 - 访问者模式

一:概述 访问者模式将作用于对象层次结构的操作封装为一个对象,并使其能够在不修改对象层次结构的情况下定义新的操作。 《设计模式:可复用面向对象软件的基础》一书中的访问者模式因两个原因而具有传奇色彩:一是因为它的复杂性&a…