深度学习中的Checkpoint是什么?

news2025/3/15 17:38:45

诸神缄默不语-个人CSDN博文目录

文章目录

  • 引言
  • 1. 什么是Checkpoint?
  • 2. 为什么需要Checkpoint?
  • 3. 如何使用Checkpoint?
    • 3.1 TensorFlow 中的 Checkpoint
    • 3.2 PyTorch 中的 Checkpoint
    • 3.3 transformers中的Checkpoint
  • 4. 在 NLP 任务中的应用
  • 5. 总结
  • 6. 参考资料

引言

在深度学习训练过程中,模型的训练往往需要较长的时间,并且计算资源昂贵。由于训练过程中可能遇到各种意外情况,比如断电、程序崩溃,甚至想要在不同阶段对比模型的表现,因此我们需要一种机制来保存训练进度,以便可以随时恢复。这就是**Checkpoint(检查点)**的作用。

对于刚入门深度学习的小伙伴,理解Checkpoint的概念并合理使用它,可以大大提高模型训练的稳定性和效率。本文将详细介绍Checkpoint的概念、用途以及如何在NLP任务中使用它。

1. 什么是Checkpoint?

Checkpoint(检查点)是指在训练过程中,定期保存模型的状态,包括模型的权重参数、优化器状态以及训练进度(如当前的epoch数)。这样,即使训练中断,我们也可以从最近的Checkpoint恢复训练,而不是从头开始。

简单来说,Checkpoint 就像一个存档点,让我们能够在不重头训练的情况下继续优化模型。

一个大模型的checkpoint可能以如下文件形式储存:
在这里插入图片描述

2. 为什么需要Checkpoint?

Checkpoint 的主要作用包括:

  1. 防止训练中断导致的损失:训练神经网络需要消耗大量计算资源,训练时间可能长达数小时甚至数天。如果训练因突发情况(如断电、程序崩溃)中断,Checkpoint 可以帮助我们恢复进度。

  2. 支持断点续训:当训练过程中需要调整超参数或遇到不可预见的问题时,我们可以从最近的Checkpoint继续训练,而不必重新训练整个模型。

  3. 保存最佳模型:在训练过程中,我们通常会评估模型在验证集上的表现。通过Checkpoint,我们可以保存最优表现的模型,而不是仅仅保存最后一次训练的结果。

  4. 支持迁移学习:在实际应用中,我们经常会使用预训练模型(如BERT、GPT等),然后在特定任务上进行微调(fine-tuning)。这些预训练模型的Checkpoint可以用作新的任务的起点,而不必从零开始训练。

3. 如何使用Checkpoint?

在深度学习框架(如 TensorFlow 和 PyTorch)中,Checkpoint 的使用非常方便。下面分别介绍在 TensorFlow 和 PyTorch 中如何保存和加载 Checkpoint。

3.1 TensorFlow 中的 Checkpoint

保存Checkpoint:

在 TensorFlow(Keras)中,可以使用 ModelCheckpoint 回调函数来实现自动保存。

import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint

# 创建简单的模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu', input_shape=(100,)),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# 设置Checkpoint,保存最优模型
checkpoint_callback = ModelCheckpoint(
    filepath='best_model.h5',  # 保存路径
    save_best_only=True,        # 仅保存最优模型
    monitor='val_loss',         # 监控的指标
    mode='min',                 # val_loss 越小越好
    verbose=1                   # 输出日志
)

# 训练模型,并使用Checkpoint
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=10, callbacks=[checkpoint_callback])

加载Checkpoint:

from tensorflow.keras.models import load_model

# 加载已保存的模型
model = load_model('best_model.h5')

这样,我们就可以在训练过程中自动保存最优模型,并在需要时加载它。

3.2 PyTorch 中的 Checkpoint

在 PyTorch 中,我们可以使用 torch.savetorch.load 来手动保存和加载模型。

保存Checkpoint:

import torch

# 假设 model 是我们的神经网络,optimizer 是优化器
checkpoint = {
    'epoch': epoch,
    'model_state_dict': model.state_dict(),
    'optimizer_state_dict': optimizer.state_dict()
}
torch.save(checkpoint, 'checkpoint.pth')

加载Checkpoint:

# 加载Checkpoint
checkpoint = torch.load('checkpoint.pth')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']

在 PyTorch 中,保存和加载 Checkpoint 需要手动指定模型和优化器的状态,而 TensorFlow 处理起来更为自动化。

3.3 transformers中的Checkpoint

如果直接用transformers的Trainer的话,就会自动根据TrainingArguments的参数来设置checkpoint保存策略。具体的参数有save_strategy、save_steps、save_total_limit、load_best_model_at_end等,可以看我之前写过的关于transformers包的博文。

epochs = 10
lr = 2e-5
train_bs = 8
eval_bs = train_bs * 2

training_args = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=epochs,
    learning_rate=lr,
    per_device_train_batch_size=train_bs,
    per_device_eval_batch_size=eval_bs,
    evaluation_strategy="epoch",
    logging_steps=logging_steps
)

断点续训:

# Trainer 的定义
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset
)

# 从最近的检查点恢复训练
trainer.train(resume_from_checkpoint=True)

4. 在 NLP 任务中的应用

在自然语言处理任务中,Checkpoint 主要用于:

  1. 训练 Transformer 模型(如 BERT、GPT)时,保存和恢复训练进度。
  2. 微调预训练模型时,从预训练权重(如 bert-base-uncased)加载 Checkpoint 进行继续训练。
  3. 文本生成任务(如 Seq2Seq 模型),确保中断时可以从最近的 Checkpoint 继续训练。

5. 总结

  • Checkpoint 是深度学习训练过程中保存模型状态的机制,可以防止训练中断带来的损失。
  • 它有助于断点续训、保存最佳模型以及进行迁移学习
  • 在 TensorFlow 和 PyTorch 中都有方便的方式来保存和加载 Checkpoint
  • 在 NLP 任务中,Checkpoint 被广泛用于 Transformer 训练、预训练模型微调等任务

6. 参考资料

  1. 模型训练当中 checkpoint 作用是什么 - 简书

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2295874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

用深度学习模型构建海洋动物图像分类保姆教程

使用深度学习模型构建深度学习海洋动物图像分类模型的完整步骤如下,分为关键阶段和详细操作说明: 1. 数据准备与预处理 1.1 数据集组织 按类别分文件夹存储图像,例如:dataset/train/class1/class2/...val/class1/class2/...test…

npm无法加载文件 因为此系统禁止运行脚本

安装nodejs后遇到问题: 在项目里【node -v】可以打印出来,【npm -v】打印不出来,显示npm无法加载文件 因为此系统禁止运行脚本。 但是在winr,cmd里【node -v】,【npm -v】都也可打印出来。 解决方法: cmd里可以打印出…

知识库升级新思路:用生成式AI打造智能知识助手

在当今信息爆炸的时代,企业和组织面临着海量数据的处理和管理挑战。知识库管理系统(Knowledge Base Management System, KBMS)作为一种有效的信息管理工具,帮助企业存储、组织和检索知识。然而,传统的知识库系统往往依…

蚂蚁爬行最短问题

初二数学问题记录 分析过程 考点:2点之间直线最短。 思考过程:将EBCF以BC为边翻折,EF边翻折后为,则A为蚂蚁需要爬行的最小距离。

【电机控制器】STC8H1K芯片——低功耗

【电机控制器】STC8H1K芯片——低功耗 文章目录 [TOC](文章目录) 前言一、芯片手册说明二、IDLE模式三、PD模式四、PD模式唤醒五、实验验证1.接线2.视频(待填) 六、参考资料总结 前言 使用工具: 1.STC仿真器烧录器 提示:以下是本…

【专题】2024-2025人工智能代理深度剖析:GenAI 前沿、LangChain 现状及演进影响与发展趋势报告汇总PDF洞察(附原数据表)

原文链接:https://tecdat.cn/?p39630 在科技飞速发展的当下,人工智能代理正经历着深刻的变革,其能力演变已然成为重塑各行业格局的关键力量。从早期简单的规则执行,到如今复杂的自主决策与多智能体协作,人工智能代理…

SAP-ABAP:SAP的第一行REPORT后面后缀作用详解

在SAP ABAP中&#xff0c;REPORT 语句是定义报表程序的核心语句&#xff0c;其后可以跟多个后缀&#xff08;参数&#xff09;&#xff0c;用于控制报表的行为和属性。以下是常见的 REPORT 后缀及其作用的详解&#xff1a; 程序名称 • 语法&#xff1a;REPORT <program_nam…

25/2/8 <机器人基础> 阻抗控制

1. 什么是阻抗控制&#xff1f; 阻抗控制旨在通过调节机器人与环境的相互作用&#xff0c;控制其动态行为。阻抗可以理解为一个力和位移之间的关系&#xff0c;涉及力、速度和位置的协同控制。 2. 阻抗控制的基本概念 力控制&#xff1a;根据感测的外力调节机械手的动作。位置…

Sparse4D v3:推进端到端3D检测和跟踪

论文地址&#xff1a;2311.11722 (arxiv.org) 代码地址&#xff1a;HorizonRobotics/Sparse4D (github.com) 在自动驾驶感知系统中&#xff0c;3D 检测和跟踪是两项基本任务。本文在 Sparse4D 框架的基础上更深入地探讨了这一领域。作者引入了两个辅助训练任务&#xff08;Temp…

python 语音识别方案对比

目录 一、语音识别 二、代码实践 2.1 使用vosk三方库 2.2 使用SpeechRecognition 2.3 使用Whisper 一、语音识别 今天识别了别人做的这个app,觉得虽然是个日记app 但是用来学英语也挺好的,能进行语音识别,然后矫正语法,自己说的时候 ,实在不知道怎么说可以先乱说,然…

革新在线购物体验:CatV2TON引领虚拟试穿技术新纪元

在这个数字化飞速发展的时代&#xff0c;图像与视频合成技术正以前所未有的速度重塑着我们的生活&#xff0c;尤其在在线零售领域&#xff0c;一场关于购物体验的革命正在悄然上演。想象一下&#xff0c;无需亲自试穿&#xff0c;仅凭一张照片或一段视频&#xff0c;就能精准预…

【Git】ssh如何配置gitlab+github

当我们工作项目在gitlab上&#xff0c;又希望同时能更新自己个人的github项目时&#xff0c;可能因为隐私问题&#xff0c;不能使用同一′密钥。就需要在本地电脑上分别配置两次ssh。 1、分别创建ssh key 在用户主目录下&#xff0c;查询是否存在“.ssh”文件&#xff1a; 如…

音频进阶学习十二——Z变换一(Z变换、收敛域、性质与定理)

文章目录 前言一、Z变换1.Z变换的作用2.Z变换公式3.Z的状态表示1&#xff09; r 1 r1 r12&#xff09; 0 < r < 1 0<r<1 0<r<13&#xff09; r > 1 r>1 r>1 4.关于Z的解释 二、收敛域1.收敛域的定义2.收敛域的表示方式3.ROC的分析1&#xff09;当 …

使用Redis解决使用Session登录带来的共享问题

在学习项目的过程中遇到了使用Session实现登录功能所带来的共享问题&#xff0c;此问题可以使用Redis来解决&#xff0c;也即是加上一层来解决问题。 接下来介绍一些Session的相关内容并且采用Session实现登录功能&#xff08;并附上代码&#xff09;&#xff0c;进行分析其存在…

STM32F1学习——USART串口通信

一、USART通用同步异步收发机 USART的全称是Universal Synchronous/Asynchronous Receiver Transmitter &#xff0c; 通用同步异步收发机&#xff0c;但由于他主要以异步通信为主&#xff0c;所以他也叫UART。它遵循TTL电平标准&#xff0c;是一种全双工异步通信标准&#xff…

Docker 部署 MinIO | 国内阿里镜像

一、导读 Minio 是个基于 Golang 编写的开源对象存储套件&#xff0c;基于Apache License v2.0开源协议&#xff0c;虽然轻量&#xff0c;却拥有着不错的性能。它兼容亚马逊S3云存储服务接口。可以很简单的和其他应用结合使用&#xff0c;例如 NodeJS、Redis、MySQL等。 二、…

【R语言】相关系数

一、cor()函数 cor()函数是R语言中用于计算相关系数的函数&#xff0c;相关系数用于衡量两个变量之间的线性关系强度和方向。 常见的相关系数有皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;、斯皮尔曼秩相关系数&#xff08;Spearmans rank corre…

DeepSeek-R1技术报告快速解读

相关论文链接如下&#xff1a; DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language ModelsDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 文章目录 一、论文脑图二、论文解读2.1 研究背景2.2 研究方法2.3 …

基于SpringBoot+Vue实现航空票务管理系统

作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参与学生毕业答辩指导&#xff0c;…

让文物“活”起来,以3D数字化技术传承文物历史文化!

文物&#xff0c;作为不可再生的宝贵资源&#xff0c;其任何毁损都是无法逆转的损失。然而&#xff0c;当前文物保护与修复领域仍大量依赖传统技术&#xff0c;同时&#xff0c;文物管理机构和专业团队的力量相对薄弱&#xff0c;亟需引入数字化管理手段以应对挑战。 积木易搭…