排序合集(一)

news2025/2/10 14:09:23

以下是更完善和人性化的版本,增加了一些细节和解释,同时让内容更易读:


一、直接插入排序 (Insertion Sort)

基本思想

直接插入排序是一种简单直观的排序算法,就像我们打扑克牌时的操作:每次摸到一张牌,都会把它插入到手中已排好序的牌的正确位置。通过这种方式,逐步构建一个有序序列。

步骤
  1. 从第一个元素开始,该元素可以认为已经被排序。

  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描。

  3. 如果该元素(已排序)大于新元素,将该元素移到下一位置。

  4. 重复步骤3,直到找到已排序的元素小于或等于新元素的位置。

  5. 将新元素插入到该位置后。

  6. 重复步骤2~5,直到所有元素都被排序。

C语言代码示例
void InsertSort(int* a, int n) {
    for (int i = 1; i < n; i++) { // 从第二个元素开始
        int temp = a[i]; // 当前要插入的元素
        int j = i - 1;    // 从已排序部分的最后一个元素开始比较
        while (j >= 0 && a[j] > temp) {
            a[j + 1] = a[j]; // 如果当前元素大于新元素,向后移动
            j--;
        }
        a[j + 1] = temp; // 找到插入位置后,插入新元素
    }
}
算法分析
  • 时间复杂度

    • 最好情况(已排好序):O(n),每个元素只需比较一次。

    • 平均情况和最坏情况(逆序):O(n²)。

  • 空间复杂度:O(1),只需要一个临时变量。

  • 稳定性:稳定。相等元素的相对位置不会改变。

  • 适用场景:适用于小型数据集或基本有序的数据集,效率较高。


二、冒泡排序 (Bubble Sort)

基本思想

冒泡排序是一种简单但效率较低的排序算法。它的名字来源于其工作方式:通过重复遍历待排序的数列,比较相邻的两个元素,如果顺序错误就交换它们。每次遍历后,最大的元素会像气泡一样“浮”到数列的末尾。

步骤
  1. 比较相邻的元素。如果第一个比第二个大,就交换它们。

  2. 对每一对相邻元素做同样的操作,从第一个元素到最后一个元素。经过这一轮后,最大的元素会移动到数列的末尾。

  3. 重复上述步骤,但每次减少比较的范围,因为最后的元素已经排好序。

  4. 继续重复,直到整个数列有序。

C语言代码示例
void bubbleSort(int arr[], int n) {
    for (int i = 0; i < n - 1; i++) { // 遍历 n-1 次
        for (int j = 0; j < n - i - 1; j++) { // 每次减少比较范围
            if (arr[j] > arr[j + 1]) { // 如果顺序错误,交换
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
}
算法分析
  • 时间复杂度

    • 最好情况(已排好序):O(n),因为只需要遍历一次。

    • 平均情况和最坏情况(逆序):O(n²)。

  • 空间复杂度:O(1),只需要一个临时变量。

  • 稳定性:稳定。相等元素的相对位置不会改变。

  • 适用场景:由于效率较低,通常只用于教学示例,不适合实际应用。


三、希尔排序 (Shell Sort)

基本思想

希尔排序是插入排序的一种改进版本,通过引入“增量”来分组排序,减少数据的移动次数。它将待排序的元素分成若干组,每组内的元素间距为某个增量,然后对每组进行插入排序。随着增量逐渐减小,最终增量为1时,整个序列基本有序,此时再进行一次直接插入排序即可完成。

步骤
  1. 选择一个增量序列,例如 [n/2, n/4, ..., 1]

  2. 按增量序列的个数进行多趟排序。

  3. 每趟排序中,根据当前增量将序列分成若干子序列,对每个子序列进行插入排序。

  4. 增量逐步减小,直到增量为1,完成排序。

C语言代码示例
void shellSort(int arr[], int n) {
    for (int gap = n / 2; gap > 0; gap /= 2) { // 增量逐步减小
        for (int i = gap; i < n; i++) { // 对每个子序列进行插入排序
            int temp = arr[i];
            int j = i;
            while (j >= gap && arr[j - gap] > temp) {
                arr[j] = arr[j - gap];
                j -= gap;
            }
            arr[j] = temp;
        }
    }
}
算法分析
  • 时间复杂度

    • 最好情况:O(n log n)。

    • 平均情况:取决于增量序列,通常在 O(n log² n) 到 O(n^(3/2)) 之间。

    • 最坏情况:O(n²)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。由于分组排序,可能会破坏元素的相对顺序。

  • 适用场景:适用于中等规模的数据集,性能优于简单排序算法。


四、选择排序 (Selection Sort)

基本思想

选择排序是一种简单直观的排序算法。它的核心思想是:每次从未排序的部分中找到最小(或最大)的元素,放到已排序部分的末尾。通过逐步缩小未排序部分的范围,最终完成排序。

步骤
  1. 在未排序的序列中找到最小元素。

  2. 将最小元素与未排序部分的第一个元素交换。

  3. 将已排序部分的边界向后移动一位。

  4. 重复上述步骤,直到所有元素都被排序。

C语言代码示例
void selectionSort(int arr[], int n) {
    for (int i = 0; i < n - 1; i++) { // 遍历 n-1 次
        int min_idx = i; // 假设当前元素为最小值
        for (int j = i + 1; j < n; j++) { // 找到未排序部分的最小值
            if (arr[j] < arr[min_idx]) {
                min_idx = j;
            }
        }
        // 交换最小值与当前元素
        int temp = arr[min_idx];
        arr[min_idx] = arr[i];
        arr[i] = temp;
    }
}
算法分析
  • 时间复杂度

    • 最好、平均和最坏情况:O(n²)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。交换操作可能会破坏相等元素的相对顺序。

  • 适用场景:实现简单,适合小型数据集或教学示例。


五、堆排序 (Heap Sort)

基本思想

堆排序是一种基于堆数据结构的排序算法。堆是一种特殊的完全二叉树,分为大顶堆和小顶堆。堆排序利用堆的性质,快速找到最大或最小元素,并逐步构建有序序列。

步骤
  1. 将待排序的序列构建成一个大顶堆(升序排序)或小顶堆(降序排序)。

  2. 将堆顶元素(最大值或最小值)与末尾元素交换。

  3. 将剩余的元素重新调整为堆。

  4. 重复上述步骤,直到所有元素都被排序。

C语言代码示例
void heapify(int arr[], int n, int i) {
    int largest = i; // 假设当前节点为最大值
    int left = 2 * i + 1; // 左子节点
    int right = 2 * i + 2; // 右子节点

    if (left < n && arr[left] > arr[largest]) {
        largest = left; // 如果左子节点更大
    }
    if (right < n && arr[right] > arr[largest]) {
        largest = right; // 如果右子节点更大
    }
    if (largest != i) {
        // 交换当前节点与最大值节点
        int temp = arr[i];
        arr[i] = arr[largest];
        arr[largest] = temp;

        // 递归调整子树
        heapify(arr, n, largest);
    }
}

void heapSort(int arr[], int n) {
    // 构建大顶堆
    for (int i = n / 2 - 1; i >= 0; i--) {
        heapify(arr, n, i);
    }

    // 逐步提取堆顶元素
    for (int i = n - 1; i >= 0; i--) {
        // 交换堆顶元素与末尾元素
        int temp = arr[0];
        arr[0] = arr[i];
        arr[i] = temp;

        // 调整剩余元素为堆
        heapify(arr, i, 0);
    }
}
算法分析
  • 时间复杂度

    • 最好、平均和最坏情况:O(n log n)。

  • 空间复杂度:O(1)。

  • 稳定性:不稳定。交换操作可能会破坏相等元素的相对顺序。

  • 适用场景:适合大数据量的排序,性能稳定。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2295842.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DeepSeek-R1技术报告快速解读

相关论文链接如下&#xff1a; DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language ModelsDeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 文章目录 一、论文脑图二、论文解读2.1 研究背景2.2 研究方法2.3 …

基于SpringBoot+Vue实现航空票务管理系统

作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参与学生毕业答辩指导&#xff0c;…

让文物“活”起来,以3D数字化技术传承文物历史文化!

文物&#xff0c;作为不可再生的宝贵资源&#xff0c;其任何毁损都是无法逆转的损失。然而&#xff0c;当前文物保护与修复领域仍大量依赖传统技术&#xff0c;同时&#xff0c;文物管理机构和专业团队的力量相对薄弱&#xff0c;亟需引入数字化管理手段以应对挑战。 积木易搭…

java项目之美妆产品进销存管理系统的设计与开发源码(ssm+mysql)

项目简介 美妆产品进销存管理系统的设计与开发实现了以下功能&#xff1a; 美妆产品进销存管理系统的设计与开发的主要使用者分为管理员登录后修改个人的密码。产品分类管理中&#xff0c;对公司内的所有产品分类进行录入&#xff0c;也可以对产品分类进行修改和删除。产品管…

保姆级教程Docker部署Zookeeper模式的Kafka镜像

目录 一、安装Docker及可视化工具 二、Docker部署Zookeeper 三、单节点部署 1、创建挂载目录 2、运行Kafka容器 3、Compose运行Kafka容器 4、查看Kafka运行状态 5、验证生产消费 四、部署可视化工具 1、创建挂载目录 2、Compose运行Kafka-eagle容器 3、查看Kafka-e…

idea插件开发dom4j报错:SAXParser cannot be cast to class org.xml.sax.XMLReader

手打不易&#xff0c;如果转摘&#xff0c;请注明出处&#xff01; 注明原文&#xff1a;https://blog.csdn.net/q258523454/article/details/145512328 dom4j报错 idea插件使用到了dom4j依赖&#xff0c;但是报错&#xff1a; I will print the stack trace then carry on…

【Go语言圣经】第八节:Goroutines和Channels

DeepSeek 说 Goroutines 和 Channels 最近非常流行询问DeepSeek某些相关概念或热点的解释&#xff0c;因此在开始系统性地学习《Go语言圣经》之前&#xff0c;我首先向DeepSeek进行了提问。具体的Prompt如下&#xff1a; 有关Golang当中的Goroutines和Channels&#xff0c;我现…

第3章 使用 Vue 脚手架

第3章 使用 Vue 脚手架 3.1 初始化脚手架3.1.1 说明3.1.2. 具体步骤3.1.3 分析脚手架结构1 总结2 细节分析1 配置文件2 src文件1 文件结构分析2 例子 3 public文件4 最终效果 3.2 ref属性3.3 props配置项3.4 mixin混入3.5 插件3.6 scoped样式3.7 Todo-list 案例3.7.1 组件化编码…

XILINX硬件设计-(1)LVDS接口总结

1.LVDS差分信号电路原理 LVDS指的是低压差分信号&#xff0c;是一种电平标准。 差分信号在串行通信中有着非常广泛的应用&#xff0c;典型应用有PCIE中的gen1&#xff0c;gen2&#xff0c;gen3&#xff0c;gen4&#xff0c;gen5&#xff0c;SATA接口&#xff0c;USB接口等。 …

单张照片可生成写实3D头部模型!Adobe提出FaceLift,从单一的人脸图像中重建出360度的头部模型。

FaceLift是Adobe和加州大学默塞德分校推出的单图像到3D头部模型的转换技术,能从单一的人脸图像中重建出360度的头部模型。FaceLift基于两阶段的流程实现:基于扩散的多视图生成模型从单张人脸图像生成一致的侧面和背面视图;生成的视图被输入到GS-LRM重建器中,产出详细的3D高斯表…

【AI】DeepSeek知识类任务和推理能力均表现优秀

2024 年 12 月 26 日&#xff0c;杭州深度求索&#xff08;DeepSeek AI&#xff09;发布 DeepSeek-V3 并同步开源&#xff0c;据介绍&#xff0c;DeepSeek-V3 多项评测成绩超越了 Qwen2.5-72B 和 Llama-3.1-405B 等其他开源模型&#xff0c;并在性能上和世界顶尖的闭源模型 GPT…

编程领域的IO模型(BIO,NIO,AIO)

目前对于市面上绝大多数的应用来说&#xff0c;不能实现的业务功能太少了。更多的是对底层细节&#xff0c;性能优化的追求。其中IO就是性能优化中很重要的一环。Redis快&#xff0c;mysql缓冲区存在的意义。都跟IO有着密切关系。IO其实我们都在用&#xff0c;输入输出流这块。…

DeepSeek为何能爆火

摘要&#xff1a;近年来&#xff0c;DeepSeek作为一款新兴的社交媒体应用&#xff0c;迅速在年轻人群体中走红&#xff0c;引发了广泛关注。本文旨在探讨DeepSeek为何能在短时间内爆火&#xff0c;从而为我国社交媒体的发展提供参考。首先&#xff0c;通过文献分析&#xff0c;…

【AIGC】语言模型的发展历程:从统计方法到大规模预训练模型的演化

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;语言模型的发展历程&#xff1a;从统计方法到大规模预训练模型的演化1 统计语言模型&#xff08;Statistical Language Model, SLM&#xff09;&#xff1a;统…

【04】Java+若依+vue.js技术栈实现钱包积分管理系统项目-若依框架二次开发准备工作-以及建立初步后端目录菜单列-优雅草卓伊凡商业项目实战

【04】Java若依vue.js技术栈实现钱包积分管理系统项目-若依框架二次开发准备工作-以及建立初步后端目录菜单列-优雅草卓伊凡商业项目实战 项目背景 本项目经费43000元&#xff0c;需求文档如下&#xff0c;工期25天&#xff0c;目前已经过了8天&#xff0c;时间不多了&#x…

机器学习:朴素贝叶斯分类器

贝叶斯决策论是概率框架下实施决策的基本方法,对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。 贝叶斯定理是贝叶斯决策论的基础&#xff0c;描述了如何根据新的证据更新先验概率&#xff0c;贝叶斯定理&…

DeepSeek 大模型每个版本的特点以及运用场景对比

deepseek 网页地址:DeepSeek | 深度求索 1. DeepSeek-V1 发布时间:2024年1月 参数规模:预训练数据量2TB,具体参数未明确公开,推测为数十亿级别 功能特点: 编码能力:支持多种编程语言(如Python、Java、C++),可生成高质量代码框架。 长上下文处理:支持128K上下文窗口,…

【Langchain学习笔记(一)】Langchain介绍

Langchain介绍 Langchain介绍前言1、Langchain 是什么2、为什么要用 Langchain3、Langchain 的核心4、Langchain 的底层原理5、Langchain 的应用场景 Langchain介绍 前言 想象一下&#xff0c;如果你能让聊天机器人不仅仅回答通用问题&#xff0c;还能从你自己的数据库或文件…

VSCode中出现“#include错误,请更新includePath“问题,解决方法

1、出现的问题 在编写C程序时&#xff0c;想引用头文件但是出现如下提示&#xff1a; &#xff08;1&#xff09;首先检查要引用的头文件是否存在&#xff0c;位于哪里。 &#xff08;2&#xff09;如果头文件存在&#xff0c;在编译时提醒VSCode终端中"#include错误&am…

【HeadFirst系列之HeadFirstJava】第2天之类与对象-拜访对象村

前言 从今日起&#xff0c;陆续分享《HeadFirstJava》的读书笔记&#xff0c;希望能够帮助大家更好的理解Java&#xff0c;提高自己的基础编码能力。 Java是一门面向对象的高级编程语言&#xff0c;常年霸占编程语言排行榜前三。 Java是目前国内的主流开发语言&#xff0c;基本…